Cuda和cuDNN安装教程(超级详细)

本文介绍:

接下来我为大家带来超级详细的Windows10环境下cuda和cuDNN下载和安装方法:

1 . CUDA的下载

1.1下载地址:

https://developer.nvidia.com/cuda-downloads
当你点进这个链接的时候,从1看到是cuda11.2版本,
在这里插入图片描述

1.2 下载其他版本:

如果想下载cuda的其他版本可以点击2.
在这里插入图片描述

1.3 下载

如下按照红框所选进行下载cuda10.1版本:
在这里插入图片描述

2. cuDNN下载:

下载地址:https://developer.nvidia.com/rdp/cudnn-download

2.1 注册cuDNN账号

2.1.1 点击下载地址进入如下界面,如果没有账号,需要注册一个账号在进行下载。

在这里插入图片描述

2.1.2 注册完成以后进入如下界面,选择相应的cuda版本下载cuDNN版本

在这里插入图片描述

3. 安装CUDA10:

找到下载好的cuda的安装包,双击打开,设置好要安装的路径,如下所示:
在这里插入图片描述
点击OK等待安装:
在这里插入图片描述
在这里插入图片描述
勾选自定义,点击下一步:
在这里插入图片描述
第一次安装记得给如下红框都勾选上
在这里插入图片描述
记住cuda的安装路径,点击下一步:

cuda的安装路径如下:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1

在这里插入图片描述

在这里插入图片描述
点击下一步
在这里插入图片描述
出现如下界面,代表cuda安装完成。
在这里插入图片描述
检查环境是否含有环境变量,桌面上找到我的电脑,右键点击属性,如下:
在这里插入图片描述
点击高级系统设置,如下:
图片替换文本

点击环境变量
图片替换文本
找到系统变量,出现,如下环境变量:

图片本

现在需要重启电脑,然后Win+R进入cmd界面,输入nvcc -V,出现如下界面,代码cuda已经安装成功了。
注:必须要重启电脑,否则运行nvcc -V 会找不到命令。
在这里插入图片描述

4. 安装cuDNN:

对下载的cuDNN压缩包解压后出现如下三个文件夹子,在这里插入图片描述

然后找到cuda的安装路径,我的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1

分别将cuDNN三个文件夹的内容分别复制到cuda对应的文件夹里面。如下所示:
在这里插入图片描述
为cuDNN添加环境变量:
找到环境变量-系统变量-path,分别将如下三个变量添加进去,完成安装。
在这里插入图片描述

5.检查cuDNN是否安装成功:

可以参考我的下一篇博客查看cuDNN是否安装成功。
博客地址:https://blog.csdn.net/jhsignal/article/details/111398427

Transformer图像分割是一种利用Transformer模型进行图像语义分割的方法。通过将图像的每个像素点作为Transformer的输入,Transformer模型可以对每个像素点进行分类,从而实现对图像中各个区域的分割。这种方法可以应用于医学图像分割等领域,具有较好的性能准确性。 一个相关的工作是TransFuse:将TransformerCNN融合用于医学图像分割的方法。该方法将TransformerCNN结合起来,利用Transformer的自注意力机制来捕捉图像中的全局信息,再通过CNN网络来提取局部特征。这种融合的方法能够充分利用Transformer的优势,同时也能够保留CNN在局部特征提取方面的能力,从而提高图像分割的性能。 另外,Swin-Transformer是一种基于Transformer的图像分割模型。它采用了基于窗口的注意力机制,将图像划分成多个窗口,然后在每个窗口内使用Transformer进行特征提取。这种方法可以有效地减少计算量,并且在训练推断过程中具有较高的效率。Swin-Transformer在多个图像分割任务中都取得了很好的效果,并且已经在Github上开源。 如果想要深入了解Transformer在图像领域的应用,可以参考论文《An image is worth 16x16 words: Transformers for image recognition at scale》《视频彻底搞懂 Vision Transformer》。这些论文详细介绍了Transformer在图像识别分割等任务中的原理、方法实验结果,对于理解Transformer在图像分割中的应用具有重要的参考价值。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【医学图像处理】融合 Transformer CNN 进行医学图像分割](https://blog.csdn.net/weixin_61033221/article/details/122770801)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Swin-Transformer 图像分割实战:使用Swin-Transformer-Semantic-Segmentation训练ADE20K数据集(语义分割...](https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/121904901)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值