openCV
文章平均质量分 80
纯洁可爱小昊昊
这个作者很懒,什么都没留下…
展开
-
【openCV】二值图像基础操作
实现了二值图像的Thin,Thicken和提取骨架的操作。#include "opencv2/opencv.hpp"#define HIT 1#define MISS 0using namespace cv;using namespace std;const int dir[9][2] = {{-1,-1},{-1,0},{-1,1},{0,-1},{0,0},{0,1},{1原创 2016-10-11 16:00:04 · 3264 阅读 · 0 评论 -
【openCV】Canny边缘检测
手动实现了Canny边缘检测算法的部分步骤。#include "opencv2/opencv.hpp"#include using namespace cv;const int dir[8][2] = {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};inline int sqr(int x){ return x*x;}原创 2016-10-13 09:53:10 · 551 阅读 · 0 评论 -
【openCV】基础操作
读取图片Mat srcImage = imread("image1.jpg"); 判断图片是否为空srcImage.empty();转为灰度图Mat grayImage;cvtColor(srcImage,grayImage,CV_BGR2GRAY);获取/修改灰度图于(i,j)像素值grayImage.at(i,j) = 0;显示图片imshow("Picture",g原创 2016-10-05 14:46:52 · 1148 阅读 · 0 评论 -
【openCV】直方图均衡化
简单实现了直方图均衡化操作。#include "opencv2/opencv.hpp"#define HISTOGRAM_SIZE 256#define MAX_INTENSITY 255int histogram[HISTOGRAM_SIZE];float sum_histogram[HISTOGRAM_SIZE];int main(){ // 从文件中加载原图 IplIm原创 2016-10-13 09:36:19 · 318 阅读 · 0 评论 -
【openCV】特征点提取与匹
#include "opencv2/opencv.hpp"#include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/imgproc/imgproc.hpp" #include "opencv2/features2d/features2d.hpp" //#include "opencv2/nonf转载 2016-10-05 13:23:42 · 2093 阅读 · 0 评论 -
visual studio + opencv环境配置
做过两次配置,分别是Visual Studio 2010 + opencv 2.3.1和Visual Studio 2015 + opencv 2.4.13,按这个流程都可以配置成功。不同版本之间可能会有点微小的差异。一 opencv安装,环境变量设置 从官网下载opencv,解压即可,我放在D:\opencv。 设置系统变量:右键“计算机”->“属性”->“高级系原创 2016-10-17 16:27:24 · 7149 阅读 · 1 评论 -
Ubuntu16.04 openCV3.1安装
环境: Ubuntu 16.04 64bit ,openCV 3.1.0安装依赖sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev下载openCV 到官网http://o原创 2016-10-28 16:31:55 · 15355 阅读 · 0 评论 -
透视变换和仿射变换
透视变换(Perspective Transformation)是将图片投影到一个新的视平面(ViewingPlane)。变换公式:[x’] [ a11 a12 a13] [x][y’]= [ a21 a22 a23] * [y][z’] [a31 a32 a33] [z] [ a11 a12 a13]单应矩阵[ a21 a22 a23]原创 2017-02-14 10:06:10 · 3663 阅读 · 0 评论 -
opencv中的机器学习简单使用
OpenCV的ml模块实现了很多算法,包括朴素贝叶斯、K近邻、SVM、决策树、Boosting、GBT、随机森林、神经网络等。其大多继承自同一基类,训练和预测的接口都是train(),predict(),使用较为方便。神经网络:opencv实现人工神经网络(Artificial Neural Networks)最典型的多层感知器(multi-layer perceptrons, M原创 2017-03-03 18:13:32 · 9017 阅读 · 2 评论