引言
之前作者在 bilibili 上看到了一个两分半的视频。视频链接:如何求解x^11-1=0?_哔哩哔哩_bilibili这是一个教程视频,教大家如何求解x^11-1=0。https://www.bilibili.com/video/BV12h411b76b作者也研究了很久,但还是不会,然后发现在 brilliant 上的这一篇讲的比较好,就翻译了一下。
首先说明一下,在本文中多次出现了 (虚数单位)和
(圆周率)相乘的地方,在原文中有把
放前面的,也有把
放前面的。作者搜了各大网站的资料,发现学术界并没有一个统一的标准。所以作者自作主张,即本文所有地方都写成了
的形式。
文中的所有的 Problems 我在文末都会有解答。
接下来,正文开始:
绪论
单位根是一个复数,当它构成有正整数次幂时,结果是 1。单位根与数学的许多领域有联系,包括几何中的正多边形,群论,以及数论。读者需要准备好关于复数运算、欧拉公式、复平面、复单位圆、特殊角、复平面中的旋转、几何级数、共轭复数、韦达定理和牛顿和等的背景知识。
以下问题虽然看似与复数无关,但却很好地说明了统一根的工作原理:
Problem 1
Brilli 蚂蚁站在下面正十边形的顶点 1 上。
他开始时一次跳 1 个空格(从 1 跳到 2,然后从 2 跳到 3,依此类推)。他以这样跳跃了 10 次。
然后他一次跳 2 个空格(从 1 跳到 3,然后从 3 跳到 5,依此类推)。他以这样跳跃了 10 次。
他继续每 10 跳增加一次跳跃距离:跳 3 个空格 10 次,然后跳 4 个空格 10 次,依此类推。
在 Brilli 跳了 10 个空格 10 次后,他结束了他的锻炼。
当 Brilli 完成他的锻炼,他会站在哪个顶点?
单位根的定义
Definition 1
对于任何正整数 n,n 阶单位根是方程
的复数解,并且有 n 个方程的解。
Theroem 1
如果 n 是偶数,方程
有 2 个实解,是 1 和 -1;如果 n 是奇数,会有 1 个实解,即 1。
Example 1
3 阶单位根是多少?
根据定义,3 阶单位根是方程
的解。
根据直觉
是这个方程的解之一,因此 1 是 3 阶单位根。
然而,这个方程有两个复数解需要考虑。这些解是
和
。
写成一组,3 阶单位根是:
。
(注:3 阶单位根写做
,所以
)
可以使用复数运算来验证这些解。您可以在下面的例子中尝试此操作。
Problem 2
求解 n 阶单位根
欧拉公式可以用来求任何正整数 n 的 n 阶单位根。
Definition 2
Theroem 2
让一个正整数 n 并使
成为所有 n 阶单位根的集合。
需要注意的是,所有 n 阶单位根的集合总是包含 n 元素。这些单位根中的每一个都可以通过在表达式 中改变 k 获得。
Proof 1
根据欧拉公式,
。
让 k 是任何正整数。
。
给出的是
,x 是一个复数且 n 一个正整数。现在我们有:
。
计算每个的
次幂。
。
需要注意的是,当
时,那么角度
和
将会有一样的结果。
因此,
有 n 不同的解, 即
,当
时。
Example 2
解方程
所有的 x。
据上述定理,解由下式给出:
。
根据欧拉公式,它们分别为:
。
Problem 3
让 z 成为 7 阶单位根。 换句话说,z 是满足方程
的复数。
如果
,当 a 和 b 是实数时,那么
最大值是多少?
将您的答案保留到小数点后 3 位。
求解
形式的方程
单位根可用于求解任何 形式的方程,当 a 是一个实数。
Example 3
找出方程
的所有复数解。
求解这个方程的方法与求解方程
的方法非常相似:
开 4 次方得到:
,当
,
。
Problem 4
当
,方程
有多少形如
的根?
单位根与正多边形的关系
单位根与几何关系密切。通过在复平面上绘制单位根,可生成正多边形的顶点。
Definition 3
对于任何整数
,n 阶单位根,当在复平面上绘制时,是正 n 边形的顶点。
Example 4
正三角形的质心位于原点,一个顶点位于
。另外两个顶点的坐标是多少?
点
对应复数
在复平面上。这个数字是 3 阶单位根。其他的 3 阶单位根是复平面上等边三角形的剩余顶点:
和
。
这些复数对应于坐标平面上的以下点:
和
。
使用单位根的旋转
8 阶单位根和 12 阶单位根共同构成复单位圆上的所有特殊角。
8 阶单位根和 12 阶单位根
因为这些值可以很容易地计算和记忆,它们对于复平面中的旋转非常有用。通过扩展,它们可用于在任何二维甚至三维空间中执行旋转。
Example 5
要使点
绕原点逆时针旋转
弧度。结果的图像是什么?
注意复平面中的对应点是
。还要注意
是一个 8 阶单位根,且其值为
。
复平面内的旋转可以通过复数相乘来实现。这个在复平面中的结果像是:
。
那么坐标平面内对应的像为
。
Problem 5
要点
绕原点逆时针旋转
弧度。如果生成的图像是
,那么
是多少?
单位根与几何级数的关系
根据几何级数的推导,我们有:
。
该恒等式以及单位根的性质可用于找到某些多项式方程的解。
Example 6
找出方程
的所有复数解。
根据上面的恒等式,方程变为:
或者直接
。
解是 4 阶单位根(除了
):
。
使用欧拉公式展开得到:
。
最后一个解被舍弃,因为
。因此,解是
。
Problem 6
考虑方程:
。
让
表示第 k 个关于方程的不同根,并令
成为那个根的实部。那么:
单位根的性质
Properties
单位根有许多特殊的性质和应用。这些只是其中的一部分:
- 如果 x 是一个 n 阶单位根,那么
也是,当 k 是任何整数时。
- 如果 x 是一个 n 阶单位根,那么
。
- 所有的 n 阶单位根之和始终为 0,当
。
- 所有的 n 阶单位根之积始终为
。
- 1 和 -1 是唯一的实单位根。
- 如果一个数是单位根,那么它的共轭复数也是。
- 对于所有不能被 n 整除的整数 k,所有的 n 阶单位根的 k 次幂之和是 0。
- 所有的 n 阶单位根的绝对值之和为 n。
- 如果 x 是一个不等于 1 的 n 阶单位根,那么
。
Theroem 3
如果 x 是一个 n 阶单位根,那么当 k 是任何整数时,
也是。
Proof 2
通过指数规则,我们可以推断出
。x 作为一个 n 阶单位根,
,因此
和
。因此
也是一个 n 阶单位根。
Example 7
寻找所有 2016 阶单位根之积。
根据定义,单位根之积与方程的根之积相同。
。
根据韦达定理,根之积与多项式的常数项有关。多项式的次数是偶次,所以根之积与常数项相同,即 -1。
Example 8
寻找所有 1729 阶单位根之和。
我们在寻找根之和。
。
根据韦达定理,根之和与一次项的系数相反。一次项的系数为 0,所以根之和是 0。
Example 9
寻找所有 17 阶单位根的 1000 次幂之和。
包含根的方程是:
,
,
,
,
。
所以我们相当于只是在寻找所有 14 次幂之和。通过牛顿和我们得到
。因此我们得出结论,和是0。
这将适用于任何 k 次幂,当 k 是一个整数且不能被 n 整除时。(取 n 阶单位根的 k 次幂之和)。
Example 10
求根的绝对值之和:
。
如果它只是求和,那么我们将得到 0。但是这个问题向我们问了绝对值。所以我们使用这样的一个定理,即每个根都可以表示为
, 当 k 是一个实数时。
是多少呢?回忆欧拉恒等式,我们可以将其改写为:
。
所以每个根的绝对值都是 1。因此,172920152016 个根的绝对值之和是 172920152016。
你可以为 n 阶单位根概括。
使用单位根解决其他问题
Problem 7
如果 α 是非实数的 7 阶单位根之一,然后求以
和
为根的一元二次方程的判别式。
提示:
- 二次方程的判别式
的判别式是
。
Problem 8
如果
,当 a 和 b 是方程
的根:
Problem 9
给定 f(x) 为:
,
N 表示:
,
当
时。
那么 M 的值是多少时
?
Problem 10
当
时,寻找:
。
Problem 11
和
是满足上述方程组的复数,其中
。
当 a 和 b 是互质正整数时,如果
,计算
。
所有 Problems 的解答
Answer of Problem 1
不同距离的“跳越数”类似于 10 阶单位根。事实上,10 阶单位根,当在复平面上绘制时,形成一个规则的十边形。在十边形周围执做 10 个“跳跃”就像是 10 阶单位根的 10 次方一样。就 Brilli 而言,这让他回到了起点。对于 10 阶单位根而言,它就是 1。
Answer of Problem 2
Answer of Problem 3
当
时,
即
到达最大值。
。
Answer of Problem 4
是整数集,所以只有
4 个解中
都是整数。
Answer of Problem 5
把点
旋转
弧度相当于复数
乘一个 12 阶单位根
。
应用复数的运算即可得出:
。
故
,
。
Answer of Problem 6
方程
可以变换为
。
方程
的解为:
。
因为
,所以要把
这个解去掉。
。
Answer of Problem 7
易证 α 和
是共轭复数,同理
和
,
和
也是。
所以我们可以知道
和
为共轭复数。
设
为
,
即为
。
,
。
根据韦达定理,
,
。
,
。
易证无论 α 是那个 7 阶单位根,
不变。
,
。
Answer of Problem 8
设
。
当 n 为
或
时(
),
。
当 n 为
时(
),
。
所以
。
,
。
Answer of Problem 9
f(x) 可以变形为
,
。
因为输入的
,所以
,
。
。
,
。
Answer of Problem 10
,
`
。
Answer of Problem 11
根据方程组得到,
。
,
。
,
。