Root of Unity(单位根)(转自brilliant)

这篇博客介绍了单位根的概念,从单位根的定义出发,探讨了如何求解不同阶的单位根,以及单位根与正多边形、旋转、几何级数的关系。通过实例和问题解答,展示了单位根在解决复数方程和几何问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

之前作者在 bilibili 上看到了一个两分半的视频。视频链接:如何求解x^11-1=0?_哔哩哔哩_bilibili这是一个教程视频,教大家如何求解x^11-1=0。https://www.bilibili.com/video/BV12h411b76b作者也研究了很久,但还是不会,然后发现在 brilliant 上的这一篇讲的比较好,就翻译了一下。

首先说明一下,在本文中多次出现了 i(虚数单位)和 \pi(圆周率)相乘的地方,在原文中有把 i 放前面的,也有把 \pi 放前面的。作者搜了各大网站的资料,发现学术界并没有一个统一的标准。所以作者自作主张,即本文所有地方都写成了 \pi i 的形式。

文中的所有的 Problems 我在文末都会有解答。

接下来,正文开始:


绪论

单位根是一个复数,当它构成有正整数次幂时,结果是 1。单位根与数学的许多领域有联系,包括几何中的正多边形,群论,以及数论。读者需要准备好关于复数运算、欧拉公式、复平面、复单位圆、特殊角复平面中的旋转、几何级数、共轭复数、韦达定理和牛顿和等的背景知识。

以下问题虽然看似与复数无关,但却很好地说明了统一根的工作原理:

Problem 1

Brilli 蚂蚁站在下面正十边形的顶点 1 上。


他开始时一次跳 1 个空格(从 1 跳到 2,然后从 2 跳到 3,依此类推)。他以这样跳跃了 10 次。
然后他一次跳 2 个空格(从 1 跳到 3,然后从 3 跳到 5,依此类推)。他以这样跳跃了 10 次。
他继续每 10 跳增加一次跳跃距离:跳 3 个空格 10 次,然后跳 4 个空格 10 次,依此类推。
在 Brilli 跳了 10 个空格 10 次后,他结束了他的锻炼。
当 Brilli 完成他的锻炼,他会站在哪个顶点?


单位根的定义

Definition 1

对于任何正整数 n,n 阶单位根是方程 x^n-1=0 的复数解,并且有 n 个方程的解。

Theroem 1

如果 n 是偶数,方程 x^n-1=0 有 2 个实解,是 1 和 -1;如果 n 是奇数,会有 1 个实解,即 1。 

Example 1

3 阶单位根是多少?


根据定义,3 阶单位根是方程 x^3-1=0 的解。

根据直觉 x=1 是这个方程的解之一,因此 1 是 3 阶单位根。

然而,这个方程有两个复数解需要考虑。这些解是x=\frac{-1+i\sqrt{3}}{2}x=\frac{-1-i\sqrt{3}}{2}

写成一组,3 阶单位根是:

x=\left \{ 1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2} \right \}

(注:3 阶单位根写做 U_{3},所以 U_3=\left \{ 1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2} \right \}

可以使用复数运算来验证这些解。您可以在下面的例子中尝试此操作。

Problem 2

(\frac{-1+i\sqrt{3}}{2})^3=?


求解 n 阶单位根

欧拉公式可以用来求任何正整数 n 的 n 阶单位根。

Definition 2

e^{ix}=cis(x)=cos(x)+i sin(x)

Theroem 2

让一个正整数 n 并使 U_n 成为所有 n 阶单位根的集合。

U_n=\left \{ e^{\frac{2k\pi i}{n}}|k\in \left \{ 1,2,...,n \right \} \right \}

需要注意的是,所有 n 阶单位根的集合总是包含 n 元素。这些单位根中的每一个都可以通过在表达式 e^{\frac{2k\pi i}{n}} 中改变 k 获得

Proof 1

根据欧拉公式,

e^{2\pi i}=cos(2\pi)+isin(2\pi)=1

让 k 是任何正整数。

(e^{2\pi i})^k=e^{2k\pi i}=1^k=1。 

给出的是 x^n=1,x 是一个复数且 n 一个正整数。现在我们有:

x^n=1=e^{2\pi i}=e^{4\pi i}=e^{6\pi i}=...=e^{2k\pi i}

计算每个的 \frac{1}{n} 次幂。

(x^n)^{\frac{1}{n}}=x=e^{\frac{2\pi i}{n}}=e^{\frac{4\pi i}{n}}=e^{\frac{6\pi i}{n}}=...=e^{\frac{2k\pi i}{n}}

需要注意的是,当 k> n 时,那么角度 \frac{2k\pi}{n} 和 \frac{2(k-n)\pi}{n} 将会有一样的结果。

因此,x^n=1 有 n 不同的解, 即 e^{\frac{2k\pi i}{n}},当 k=1,2,3,...,n 时。

Example 2

解方程 x^3=1 所有的 x。


据上述定理,解由下式给出:

x=e^{\frac{2\pi i}{3}},e^{\frac{4\pi i}{3}},e^{\frac{6\pi i}{3}}

根据欧拉公式,它们分别为:

x=cos(\frac{2\pi}{3})+isin(\frac{2\pi}{3})=\frac{-1+i\sqrt{3}}{2}

x=cos(\frac{4\pi}{3})+isin(\frac{4\pi}{3})=\frac{-1-i\sqrt{3}}{2}

x=cos(\frac{6\pi}{3})+isin(\frac{6\pi}{3})=1

Problem 3

让 z 成为 7 阶单位根。 换句话说,z 是满足方程 z^7=1 的复数。

如果 z=a+bi,当 a 和 b 是实数时,那么 a+b 最大值是多少?

将您的答案保留到小数点后 3 位。


求解 x^n=a 形式的方程

单位根可用于求解任何 x^n=a 形式的方程,当 a 是一个实数。  

Example 3

找出方程 x^4=2 的所有复数解。


求解这个方程的方法与求解方程 x^4=1 的方法非常相似:

x^4=2(1)=2e^{2\pi i}=2e^{4\pi i}=2e^{6\pi i}=2e^{8\pi i}

开 4 次方得到:

x=\sqrt[4]{2}e^{\frac{2k\pi i}{4}},当 k=1,2,3,4

x=i\sqrt[4]{2},-i\sqrt[4]{2},-\sqrt[4]{2},\sqrt[4]{2}

Problem 4

当 \left ( a,b \right )\in\mathbb{Z},方程 x^8=16 有多少形如 a-bi 的根?


单位根与正多边形的关系

单位根与几何关系密切。通过在复平面上绘制单位根,可生成正多边形的顶点。

Definition 3

对于任何整数 n>3,n 阶单位根,当在复平面上绘制时,是正 n 边形的顶点。

Example 4

正三角形的质心位于原点,一个顶点位于 (1,0)。另外两个顶点的坐标是多少?


点 (1,0) 对应复数 1+0i 在复平面上。这个数字是 3 阶单位根。其他的 3 阶单位根是复平面上等边三角形的剩余顶点:

\frac{-1+i\sqrt{3}}{2} 和 \frac{-1-i\sqrt{3}}{2}

这些复数对应于坐标平面上的以下点:

\left ( -\frac{1}{2},\frac{\sqrt{3}}{2} \right ) 和 \left ( -\frac{1}{2},-\frac{\sqrt{3}}{2} \right )


使用单位根的旋转

8 阶单位根和 12 阶单位根共同构成复单位圆上的所有特殊角

统一的 \(8^\text{th}\) 和 \(12^\text{th}\) 根

8 阶单位根和 12 阶单位根

因为这些值可以很容易地计算和记忆,它们对于复平面中的旋转非常有用。通过扩展,它们可用于在任何二维甚至三维空间中执行旋转。

Example 5

要使点 (2,3) 绕原点逆时针旋转 \frac{3\pi }{4} 弧度。结果的图像是什么?


注意复平面中的对应点是 2+3i。还要注意 e^{\frac{3\pi i}{4}} 是一个 8 阶单位根,且其值为 -\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}

复平面内的旋转可以通过复数相乘来实现。这个在复平面中的结果像是:

(2+3i)(-\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2})=-\sqrt{2}-\frac{3\sqrt{2}}{2}+i(\sqrt{2}-\frac{3\sqrt{2}}{2})=-\frac{5\sqrt{2}}{2}-\frac{i\sqrt{2}}{2}

那么坐标平面内对应的像为 (-\frac{5\sqrt{2}}{2},-\frac{\sqrt{2}}{2})

Problem 5

要点 (4+7\sqrt{3},7-4\sqrt{3}) ​绕原点逆时针旋转 \frac{\pi}{3} 弧度。如果生成的图像是 (a,b),那么 a+b 是多少?


单位根与几何级数的关系

根据几何级数的推导,我们有:

\sum_{k=0}^{n}x^k=\frac{x^{n+1}-1}{x-1}

该恒等式以及单位根的性质可用于找到某些多项式方程的解。

Example 6

找出方程 x^3+x^2+x+1=0 的所有复数解。


根据上面的恒等式,方程变为:

\frac{x^4-1}{x-1}=0​ 或者直接 x^4=1, x\neq 1

解是 4 阶单位根(除了 x=1):

x=e^{\frac{2\pi i}{4}},e^{\frac{4\pi i}{4}},e^{\frac{6\pi i}{4}},e^{\frac{8\pi i}{4}}

使用欧拉公式展开得到:

x=0+i,0-i,-1+0i,1+0i

最后一个解被舍弃,因为 x\neq 1。因此,解是 i,-i,-1

Problem 6

考虑方程:

x^7+x^6+x^5+x^4+x^3+x^2+x+1=0

x_k​ 表示第 k 个关于方程的不同根,并令 \Re (x_k) 成为那个根的实部。那么:

\sum_{k=1}^{7}\left [ \Re(x_k) \right ]^2=?


单位根的性质

Properties
单位根有许多特殊的性质和应用。这些只是其中的一部分:

  • 如果 x 是一个 n 阶单位根,那么 x^k 也是,当 k 是任何整数时。
  • 如果 x 是一个 n 阶单位根,那么 x^n=1
  • 所有的 n 阶单位根之和始终为 0,当 n\neq 0
  • 所有的 n 阶单位根之积始终为 (-1)^{n+1}
  • 1 和 -1 是唯一的实单位根。
  • 如果一个数是单位根,那么它的共轭复数也是。
  • 对于所有不能被 n 整除的整数 k,所有的 n 阶单位根的 k 次幂之和是 0。
  • 所有的 n 阶单位根的绝对值之和为 n。
  • 如果 x 是一个不等于 1 的 n 阶单位根,那么 \sum_{k=0}^{n-1}x^k=0

Theroem 3

如果 x 是一个 n 阶单位根,那么当 k 是任何整数时,x^k 也是。

Proof 2

通过指数规则,我们可以推断出 (x^k)^n=(x^n)^k。x 作为一个 n 阶单位根, x^n=1,因此 (x^n)^k=1(x^k)^n=1。因此 x^k 也是一个 n 阶单位根。 

Example 7

寻找所有 2016 阶单位根之积。


根据定义,单位根之积与方程的根之积相同。

x^{2016}-1=0

根据韦达定理,根之积与多项式的常数项有关。多项式的次数是偶次,所以根之积与常数项相同,即 -1。

Example 8

寻找所有 1729 阶单位根之和。


我们在寻找根之和。

x^{1729}-1=0。 

根据韦达定理,根之和与一次项的系数相反。一次项的系数为 0,所以根之和是 0。

Example 9

寻找所有 17 阶单位根的 1000 次幂之和。


包含根的方程是:

x^{17}-1=0

x^{17}=1

(x^{17})^{58}=1^{58}=1

x^{986}=1

x^{1000}=x^{14}

所以我们相当于只是在寻找所有 14 次幂之和。通过牛顿和我们得到 s_1=s_2=s_3=s_4=...=s_{14}=0。因此我们得出结论,和是0。​

这将适用于任何 k 次幂,当 k 是一个整数且不能被 n 整除时。(取 n 阶单位根的 k 次幂之和)。

Example 10

求根的绝对值之和:

x^{172921052016}=1


如果它只是求和,那么我们将得到 0。但是这个问题向我们问了绝对值。所以我们使用这样的一个定理,即每个根都可以表示为 e^{ki}, 当 k 是一个实数时。\left | e^{ki} \right |是多少呢?回忆欧拉恒等式,我们可以将其改写为:

\left | e^{ki} \right |=\left | cos(k)+isin(k) \right |=\sqrt{cos^2(k)+sin^2(k)}=\sqrt{1}=1

所以每个根的绝对值都是 1。因此,172920152016 个根的绝对值之和是 172920152016。

你可以为 n 阶单位根概括。


使用单位根解决其他问题

Problem 7

如果 α 是非实数的 7 阶单位根之一,然后求以 \alpha +\alpha ^2+\alpha ^4 和 \alpha ^3+\alpha ^5+\alpha ^6 为根的一元二次方程的判别式。

提示:

  • 二次方程的判别式 ax^2+bx+c=0 的判别式是 \frac{b^2-4ac}{4a^2}

Problem 8

如果 V_{n}=a^{n}+b^{n},当 a 和 b 是方程 x^2+x+1=0 的根:

 \sum_{n=0}^{1729}(-1)^n\cdot V_n=?

Problem 9

给定 f(x) 为:

f(x)=x^{13}+2x^{12}+3x^{11}+4x^{10}+...+13x+14

N 表示:

N=f(a) \times f(a^2) \times f(a^3) \times... \times f(a^{14})

当 a=cos(\frac{2\pi}{15})+isin(\frac{2\pi}{15}) 时。

那么 M 的值是多少时 N^{\frac{1}{M}}=15

Problem 10

当 w=e^{\frac{\pi i}{11}} 时,寻找:

\prod_{k=0}^{11}\left(w^k-2w^{-k}\right)

Problem 11

\begin{cases} \alpha^3 \beta^5 = 1 \\ \alpha^7 \beta^2 = 1 \end{cases}
\alpha = \cos \theta_1 + i \sin \theta_1 和 \beta = \cos \theta_2 + i \sin \theta_2 是满足上述方程组的复数,其中 0<\theta _1,\theta _2<\frac{\pi}{2}

当 a 和 b 是互质正整数时,如果 \frac{\theta_1}{\theta_2} = \frac{a}{b},计算 a+b


所有 Problems 的解答

Answer of Problem 1

不同距离的“跳越数”类似于 10 阶单位根。事实上,10 阶单位根,当在复平面上绘制时,形成一个规则的十边形。在十边形周围执做 10 个“跳跃”就像是 10 阶单位根的 10 次方一样。就 Brilli 而言,这让他回到了起点。对于 10 阶单位根而言,它就是 1。

Answer of Problem 2

(\frac{-1+i\sqrt{3}}{2})^3=\frac{(1-2i\sqrt{3}-3)(-1+i\sqrt{3})}{8}=\frac{1+i\sqrt{3}-i\sqrt{3}+3}{4}=1​​

Answer of Problem 3

当 z=cos(\frac{2\pi}{7})+isin(\frac{2\pi}{7})​​ 时,a+b​​ 即 cos(\frac{2\pi}{7})+sin(\frac{2\pi}{7})​​ 到达最大值。

cos(\frac{2\pi}{7})+isin(\frac{2\pi}{7})\approx 0.623+0.782=1.405​​。

Answer of Problem 4

\mathbb{Z}​​ 是整数集,所以只有 x=\left \{ (1+i),(-1+i),(-1-i),(1-i) \right \}​​ 4 个解中 a,b​​ 都是整数。

Answer of Problem 5

把点 (4+7\sqrt{3},7-4\sqrt{3})​ 旋转 \frac{\pi}{3}​ 弧度相当于复数 (4+7\sqrt{3})+i(7-4\sqrt{3})​ 乘一个 12 阶单位根 \frac{1}{2}+\frac{i\sqrt{3}}{2}​。

应用复数的运算即可得出:

\left [ (4+7\sqrt{3})+i(7-4\sqrt{3}) \right ](\frac{1}{2}+\frac{i\sqrt{3}}{2})=8+14i​。

故 a=8,b=14​,a+b=8+14=22​。

Answer of Problem 6

方程 x^7+x^6+x^5+x^4+x^3+x^2+x+1=0 可以变换为 \frac{x^8-1}{x-1}=0

方程 x^8-1=0 的解为:

x=\left \{ \frac{\sqrt{2}+i\sqrt{2}}{2},i,\frac{-\sqrt{2}+i\sqrt{2}}{2},-1,\frac{-\sqrt{2}-i\sqrt{2}}{2},-i,\frac{\sqrt{2}-i\sqrt{2}}{2},1 \right \}

因为 x\neq 1,所以要把 x=1 这个解去掉。

\sum_{k=1}^{7}\left [ \Re (x_k) \right ]^2=(\frac{\sqrt{2}}{2})^2+0^2+(-\frac{\sqrt{2}}{2})^2+(-1)^2+(-\frac{\sqrt{2}}{2})^2+0^2+(\frac{\sqrt{2}}{2})^2=3

Answer of Problem 7

易证 α 和 \alpha ^6 是共轭复数,同理 \alpha^2 和 \alpha ^5\alpha^3 和 \alpha ^4 也是。

所以我们可以知道 \alpha +\alpha ^2+\alpha ^4 和 \alpha ^3+\alpha ^5+\alpha ^6 为共轭复数。

设 \beta 为 \alpha +\alpha ^2+\alpha ^4\alpha ^3+\alpha ^5+\alpha ^6 即为 \overline{\beta }

\beta +\overline{\beta }=2\Re (\beta )

\beta \cdot \overline{\beta }=\Re (\beta )^2+\Im (\beta )^2

根据韦达定理,\beta + \overline{\beta }=-\frac{b}{a}\beta \cdot \overline{\beta }=\frac{c}{a}。 

\frac{b^2-4ac}{4a^2}=\frac{1}{4}(-\frac{b}{a})^2-\frac{c}{a}=\frac{1}{4}(\beta + \overline{\beta })^2-\beta \cdot \overline{\beta }

\frac{1}{4}(\beta + \overline{\beta })^2-\beta \cdot \overline{\beta }=\frac{1}{4}(-2\Re (\beta ))^2-\Re (\beta )^2+\Im (\beta )^2=\Im (\beta )^2

易证无论 α 是那个 7 阶单位根,\left | \Im (\beta ) \right | 不变。

i\Im (\beta )=isin(\frac{2\pi}{7})+isin(\frac{4\pi}{7})+isin(\frac{8\pi}{7})=\frac{i\sqrt{7}}{2}

i^2\Im (\beta )^2=-\frac{7}{4}

Answer of Problem 8

设 a=\frac{-1+i\sqrt{3}}{2},b=\frac{-1-i\sqrt{3}}{2}

当 n 为 3k+1 或 3k+2 时(k\in \mathbb{Z}),V_n=\frac{-1}{2}+\frac{-1}{2}=-1

当 n 为 3k 时(k\in \mathbb{Z}),V_n=1+1=2

所以 \sum_{n=0}^{6k}(-1)^n\cdot V_n=0

\sum_{n=0}^{1729}(-1)^n\cdot V_n=\sum_{n=0}^{6\cdot 288+1}(-1)^n\cdot V_n=\sum_{n=0}^{1}(-1)^n\cdot V_n

\sum_{n=0}^{1}(-1)^n\cdot V_n=V_0-V_1=2-(-1)=3

Answer of Problem 9

f(x) 可以变形为 f(x)=\frac{x^{14}-1}{x-1}+\frac{x^{13}-1}{x-1}+\frac{x^{12}-1}{x-1}+...+\frac{x^{2}-1}{x-1}+\frac{x-1}{x-1}

f(x)=\frac{x^{14}+x^{13}+...+x-14}{x-1}=\frac{x^{15}-1}{(x-1)^2}-\frac{15}{x-1}

因为输入的 x=(cos(\frac{2\pi}{15})+isin(\frac{2\pi}{15}))^k,所以 x^{15}-1=0f(x)=-\frac{15}{x-1}

N=\frac{15^{14}}{\prod_{k=1}^{14}cos(\frac{2k\pi}{15})+isin(\frac{2k\pi}{15})-1}=15^{13}

N=15^MM=13

Answer of Problem 10

\prod_{k=0}^{11}(e^{\frac{k\pi i}{11}}-2e^{-\frac{k\pi i}{11}})=\prod_{k=0}^{11}(-cos(\frac{k\pi}{11})+3isin(\frac{k\pi}{11}))=(-1)^6\prod_{k=0}^{5}(1+8sin^2(\frac{k\pi}{11}))

`\prod_{k=0}^{5}(1+8sin^2(\frac{k\pi}{11}))=2047

Answer of Problem 11

根据方程组得到,\left\{\begin{matrix} 3\theta _1+5\theta _2=2\pi \\ 7\theta _1+2\theta _2 =2\pi\end{matrix}\right.

3\theta _1+5\theta _2= 7\theta _1+2\theta _24\theta _1=3\theta _2

\frac{\theta_1}{\theta_2}=\frac{3}{4}a+b=7

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值