Root of Unity(单位根)(转自brilliant)

引言

之前作者在 bilibili 上看到了一个两分半的视频。视频链接:如何求解x^11-1=0?_哔哩哔哩_bilibili这是一个教程视频,教大家如何求解x^11-1=0。https://www.bilibili.com/video/BV12h411b76b作者也研究了很久,但还是不会,然后发现在 brilliant 上的这一篇讲的比较好,就翻译了一下。

首先说明一下,在本文中多次出现了 i(虚数单位)和 \pi(圆周率)相乘的地方,在原文中有把 i 放前面的,也有把 \pi 放前面的。作者搜了各大网站的资料,发现学术界并没有一个统一的标准。所以作者自作主张,即本文所有地方都写成了 \pi i 的形式。

文中的所有的 Problems 我在文末都会有解答。

接下来,正文开始:


绪论

单位根是一个复数,当它构成有正整数次幂时,结果是 1。单位根与数学的许多领域有联系,包括几何中的正多边形,群论,以及数论。读者需要准备好关于复数运算、欧拉公式、复平面、复单位圆、特殊角复平面中的旋转、几何级数、共轭复数、韦达定理和牛顿和等的背景知识。

以下问题虽然看似与复数无关,但却很好地说明了统一根的工作原理:

Problem 1

Brilli 蚂蚁站在下面正十边形的顶点 1 上。


他开始时一次跳 1 个空格(从 1 跳到 2,然后从 2 跳到 3,依此类推)。他以这样跳跃了 10 次。
然后他一次跳 2 个空格(从 1 跳到 3,然后从 3 跳到 5,依此类推)。他以这样跳跃了 10 次。
他继续每 10 跳增加一次跳跃距离:跳 3 个空格 10 次,然后跳 4 个空格 10 次,依此类推。
在 Brilli 跳了 10 个空格 10 次后,他结束了他的锻炼。
当 Brilli 完成他的锻炼,他会站在哪个顶点?


单位根的定义

Definition 1

对于任何正整数 n,n 阶单位根是方程 x^n-1=0 的复数解,并且有 n 个方程的解。

Theroem 1

如果 n 是偶数,方程 x^n-1=0 有 2 个实解,是 1 和 -1;如果 n 是奇数,会有 1 个实解,即 1。 

Example 1

3 阶单位根是多少?


根据定义,3 阶单位根是方程 x^3-1=0 的解。

根据直觉 x=1 是这个方程的解之一,因此 1 是 3 阶单位根。

然而,这个方程有两个复数解需要考虑。这些解是x=\frac{-1+i\sqrt{3}}{2}x=\frac{-1-i\sqrt{3}}{2}

写成一组,3 阶单位根是:

x=\left \{ 1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2} \right \}

(注:3 阶单位根写做 U_{3},所以 U_3=\left \{ 1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2} \right \}

可以使用复数运算来验证这些解。您可以在下面的例子中尝试此操作。

Problem 2

(\frac{-1+i\sqrt{3}}{2})^3=?


求解 n 阶单位根

欧拉公式可以用来求任何正整数 n 的 n 阶单位根。

Definition 2

e^{ix}=cis(x)=cos(x)+i sin(x)

Theroem 2

让一个正整数 n 并使 U_n 成为所有 n 阶单位根的集合。

U_n=\left \{ e^{\frac{2k\pi i}{n}}|k\in \left \{ 1,2,...,n \right \} \right \}

需要注意的是,所有 n 阶单位根的集合总是包含 n 元素。这些单位根中的每一个都可以通过在表达式 e^{\frac{2k\pi i}{n}} 中改变 k 获得

Proof 1

根据欧拉公式,

e^{2\pi i}=cos(2\pi)+isin(2\pi)=1

让 k 是任何正整数。

(e^{2\pi i})^k=e^{2k\pi i}=1^k=1。 

给出的是 x^n=1,x 是一个复数且 n 一个正整数。现在我们有:

x^n=1=e^{2\pi i}=e^{4\pi i}=e^{6\pi i}=...=e^{2k\pi i}

计算每个的 \frac{1}{n} 次幂。

(x^n)^{\frac{1}{n}}=x=e^{\frac{2\pi i}{n}}=e^{\frac{4\pi i}{n}}=e^{\frac{6\pi i}{n}}=...=e^{\frac{2k\pi i}{n}}

需要注意的是,当 k> n 时,那么角度 \frac{2k\pi}{n} 和 \frac{2(k-n)\pi}{n} 将会有一样的结果。

因此,x^n=1 有 n 不同的解, 即 e^{\frac{2k\pi i}{n}},当 k=1,2,3,...,n 时。

Example 2

解方程 x^3=1 所有的 x。


据上述定理,解由下式给出:

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值