C++常见排序算法实现

在这里插入图片描述

总结

插入、选择、冒泡对比

在这里插入图片描述

时间与空间复杂度

在这里插入图片描述

稳定性对比

在这里插入图片描述

插入排序

在这里插入图片描述


// 插入排序 
// 最好:O(N)   -- 顺序有序或者接近有序
// 时间复杂度:O(N^2) 
// 空间复杂度:O(1)
// 稳定性:稳定
void InsertSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
		int x = a[end + 1];
		while (end >= 0)
		{
			if (a[end] > x)
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}

		a[end + 1] = x;
	}

}

希尔排序(优化了插入排序)

在这里插入图片描述

// 希尔排序 时间复杂度O(N^1.3)       数据量越大效果越明显
// 稳定性:不稳定
//思想: 元素集合越接近有序,直接插入排序算法的时间效率越高, 所以:将插入排序每次的间隔从1扩大到gap, 然后每个元素与gap距离的元素进行插入排序, 最后gap--到1, 完成最后一次插入排序
void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1; //保证最后能是1

		// 多次预排序(gap > 1) +直接插入 (gap == 1)
		// 多组一锅炖
		for (int i = 0; i < n - gap; i++)
		{
			int end = i;
			int x = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > x)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = x;
		}
	}
}

选择排序(最拉跨的一个排序)

在这里插入图片描述

// 选择排序
// 时间复杂度:O(N^2)
// 最好:O(N^2)
// 整体而言最差的排序,因为无论什么情况都是O(N^2)
// 思想:每一次从待排序的数据元素中选出最小与最大的一个元素,存放在序列的起始与末尾位置,直到全部待排序的数据元素排完 。
void SelectSort(int* a, int n)
{
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int mini = begin;
		int maxi = begin;
		for (int i = begin; i <= end; i++)
		{
			if (a[i] < a[mini])
				mini = i;
			if (a[i] > a[maxi])
				maxi = i;
		}
		Swap(&a[begin], &a[mini]);
		// 注意:begin == maxi时,最大被换走了,因此需要修正一下maxi的位置
		if (begin == maxi)
			maxi = mini;
		Swap(&a[end], &a[maxi]);
		begin++;
		end--;
	}
}

堆排序(我的博客里有专门讲这个的)

//向上建堆的时间复杂度为O(N*logN)
//向下建堆的时间复杂度为O(N)
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

// 堆排序 O(N*logN)   
// 建堆 : 升序建大堆    降序建小堆
void HeapSort(int* a, int n)
{
	//先建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}

	//
	for (int i = n - 1; i >= 0; i--)
	{
		Swap(&a[0], &a[i]);
		AdjustDown(a, i, 0);
	}
}

冒泡排序

// 冒泡排序
// 时间复杂度:O(N^2)
// 最好:O(N)
void BubbleSort(int* a, int n)
{
	int end = n;
	int flag;
	while (end > 0)
	{
		flag = 0;
		for (int i = 1; i < end; i++)
		{
			if (a[i - 1] > a[i])
			{
				flag = 1;
				Swap(&a[i - 1], &a[i]);
			}
		}
		end--;
		if (flag == 0)//当flag等于0证明本次冒泡没有交换数据,那么证明已经有序了可以break了
			break;
	}
}

快速排序(重点)

在这里插入图片描述
在这里插入图片描述

三数取中法

//三数取中法

int GetMid(int *a, int left, int right)
{
	int mid = (left + right) / 2;
	if (a[left] < a[mid])
	{
		if (a[left] < a[right])
		{
			if (a[mid] < a[right])
				return mid;
			else
				return right;
		}
		else
			return left;		
	}
	else
	{
		if (a[left] > a[right])
		{
			if (a[mid] > a[right])
				return mid;
			else
				return right;
		}
		else
			return left;
	}

}

hoare版本最原始版本

在这里插入图片描述

// 快速排序递归实现
// 快速排序hoare版本
// hoare版本
// [left, right]
// 走一趟O(N)
//左边为key   右边先走,右边找大, 左边找小,相遇交换key
int PartSort1(int* a, int left, int right)
{
	// 三数取中 -- 面对有序最坏情况,变成选中位数做key,变成最好情况
	int mini = GetMid(a, left, right);
	Swap(&a[mini], &a[left]);
	int key = left;
	while (left < right)
	{
		// 右边先走,找小
		//left < right 为了解决 5 6 7 8 9 有序场景
		//加 = 为了解决 5 5 5 5 5 相等的场景
		while (left < right && a[right] >= a[key])
			right--;

		//左边再走,找大
		while (left < right && a[left] <= a[key])
			left++;

		Swap(&a[left], &a[right]);
	}

	//相遇了
	Swap(&a[key], &a[left]);

	//返回相遇位置
	return left;
}

// O(N*logN)
void QuickSort(int* a, int left, int right)
{
	if (left >= right)
		return;

	int key = PartSort1(a, left, right);

	QuickSort(a, left, key - 1);
	QuickSort(a, key + 1, right);
}

挖坑法

在这里插入图片描述

//挖坑法
int PartSort2(int* a, int left, int right)
{
	// 三数取中 -- 面对有序最坏情况,变成选中位数做key,变成最好情况
	int mini = GetMid(a, left, right);
	Swap(&a[mini], &a[left]);

	int key = a[left];
	int pivot = left;//坑位
	while (left < right)
	{
		// 右边找小, 放到左边的坑里面
		while (left < right && a[right] >= key)
			right--;

		a[pivot] = a[right];
		pivot = right;
		// 左边找大,放到右边的坑里面
		while (left < right && a[left] <= key)
			left++;

		a[pivot] = a[left];
		pivot = left;
	}
	a[pivot] = key;

	return pivot;
}

// O(N*logN)
void QuickSort(int* a, int left, int right)
{
	if (left >= right)
		return;

	int key = PartSort2(a, left, right);

	QuickSort(a, left, key - 1);
	QuickSort(a, key + 1, right);
}

双指针法(这个最简洁)

在这里插入图片描述

//双指针法  推荐掌握这个 -- 思想三种大家都要掌握
int PartSort3(int* a, int left, int right)
{
	// 三数取中 -- 面对有序最坏情况,变成选中位数做key,变成最好情况
	int mini = GetMid(a, left, right);
	Swap(&a[mini], &a[left]);
	int key = left;
	int prev = left;
	int cur = left + 1;
	while (cur <= right)
	{
		/*if (a[cur] < a[key])
		{
			Swap(&a[cur], &a[++prev]);
		}*/
		if (a[cur] < a[key] && ++prev != cur)//这一步避免了无效的交换
		{
			Swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	Swap(&a[prev], &a[key]);
	return prev;
}

// O(N*logN)
void QuickSort(int* a, int left, int right)
{
	if (left >= right)
		return;

	int key = PartSort3(a, left, right);

	QuickSort(a, left, key - 1);
	QuickSort(a, key + 1, right);
}

快排的非递归(防止递归深度太深栈溢出)

在这里插入图片描述

// 快速排序 非递归实现
// 递归深度太深的程序,只能考虑改非递归
void QuickSortNonR(int* a, int left, int right)
{
	stack<int> st;
	st.push(left);
	st.push(right);

	while (!st.empty())
	{
		int end = st.top();
		st.pop();
		int begin = st.top();
		st.pop();

		int keyi = PartSort3(a, begin, end);

		// [begin, keyi-1] keyi [keyi+1, end]
		if (keyi + 1 < end)
		{
			st.push(keyi + 1);
			st.push(end);
		}

		if (begin < keyi - 1)
		{
			st.push(begin);
			st.push(keyi - 1);
		}
	}

}

归并排序(需要借助数组,开辟额外空间)

1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
2. 时间复杂度:O(N*logN)
3. 空间复杂度:O(N)

在这里插入图片描述

归并递归版本

void _MergeSort(int * a, int left, int right, int * tmp)
{
	if (left >= right)
		return;
	int mid = (left + right) / 2;
	// [left, mid] [mid+1, right] 有序
	_MergeSort(a, left, mid, tmp);
	_MergeSort(a, mid + 1, right, tmp);

	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	int i = left;
	
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}

	while(begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}

	for (int i = left; i <= right; i++)
	{
		a[i] = tmp[i];
	}

}

// 归并排序递归实现
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int)*n);
	if (tmp == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	_MergeSort(a, 0, n - 1, tmp);

	free(tmp);
	tmp = NULL;
}

归并排序非递归考虑边界情况不全版(当n不是2的次方时需要边界考虑)

在这里插入图片描述
上面没有考虑不是2的次方倍,因此存在越界风险

当n不是2的次方时有以下情况

在这里插入图片描述
在这里插入图片描述
处理方法
在这里插入图片描述

归并排序非递归最终正确版

// 归并排序非递归实现
// n不是2的次方时需要考虑边界
void MergeSortNonR(int* a, int n)
{
	int * tmp = (int*)malloc(sizeof(int)*n);
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i += 2 * gap)
		{
			// [i,i+gap-1] [i+gap,i+2*gap-1] 归并区间
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;
			int index = i;

			// 核心思想:end1、begin2、end2都有可能越界
			// end1越界 或者 begin2 越界都不需要归并
			if (end1 >= n || begin2 >= n)
			{
				break;
			}

			// end2 越界,需要归并,修正end2
			if (end2 >= n)
			{
				end2 = n - 1;
			}


			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
					tmp[index++] = a[begin1++];
				else
					tmp[index++] = a[begin2++];
			}

			while (begin1 <= end1)
			{
				tmp[index++] = a[begin1++];
			}

			while (begin2 <= end2)
			{
				tmp[index++] = a[begin2++];
			}

			// 把归并小区间拷贝回原数组
			for (int j = i; j <= end2; j++)
			{
				a[j] = tmp[j];
			}
		}
		gap *= 2;
	}

	free(tmp);
	tmp = nullptr;
}

计数排序

在这里插入图片描述

// 计数排序
// 时间复杂度:O(Max(N, Range))
// 空间复杂度:O(range)
// 适合范围比较集中的整数数组
// 范围较大,或者是浮点数等等都不适合排序了
void CountSort(int* a, int n)
{
	int mini = a[0], maxi = a[0];
	for (int i = 0; i < n; i++)
	{
		if (a[i] < mini)
			mini = a[i];
		if (a[i] > maxi)
			maxi = a[i];
	}

	int range = maxi - mini + 1;

	int * count = (int *)malloc(sizeof(int)*range);
	memset(count, 0, sizeof(int)*range);

	// 统计次数
	for (int i = 0; i < n; i++)
	{
		count[a[i] - mini]++;
	}

	// 根据次数,进行排序
	int j = 0;
	for (int i = 0; i < range; i++)
	{
		while (count[i]--)
		{
			a[j++] = i + mini;
		}

	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值