关联规则(association rule)挖掘与频繁项集挖掘算法Apriori Java实现

本文介绍了关联规则挖掘的概念,如支持度和置信度,并详细阐述了Apriori算法的工作原理。Apriori算法通过反单调性减少搜索空间,首先找出频繁1-itemset,然后逐步生成并验证更长的项集。文章提供了Apriori算法的Java实现源代码,以帮助读者理解并应用到实际问题中。
摘要由CSDN通过智能技术生成

假设你是一家超市的经理 ,你会想要了解顾客的购物习惯。你会想知道顾客可能会在一次购物中同时购买哪些商品,这样你就能合理安排货架,从而创造更大的利润。这就是关联规则(association rule)。其表现形式如下:

bre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值