本题的输入是一个整型数N,定义一个Beautiful Arrangement数列,这个数列由从1到N的N个数组成。对于BA数列中每个数k所在的位置i,都有k%i==0或者i%k==0,输入为BA的数列的排列方式共有多少种。
对于这种类型的题,采用一种交换-递归的思想。
class Solution {
public:
int count Arrangement(int N) {
vector<int> vs;
for (int i=0; i<N; ++i) vs.push_back(i+1);
return counts(N, vs);
}
int counts(int n, vector<int>& vs) {
if (n <= 0) return 1;
int ans = 0;
for (int i=0; i<n; ++i) {
if (vs[i]%n==0 || n%vs[i]==0) {
swap(vs[i], vs[n-1]);
ans += counts(n-1, vs);
swap(vs[i], vs[n-1]);
}
}
return ans;
}
};
初始用一个vector记录下顺序排列的N个数。从头遍历每个元素,如果有满足条件的序列,ans+=1,每次交换vector元素后,进入递归,出递归后,再将元素交换回来,保证序列不混乱。
最后,ans的值就是一共可能的排列数。