题意:
输入四个点(A,B,C,D按逆时针顺序分布)判断其组成的几何图形是否为“凸”的,即任意内角不大于180°。
题解:
考虑到内角不大于180°,我们可以运用叉积计算,叉积的第一个向量叉乘第二个向量的结果小于0,就说明第一个向量逆时针与第二个向量的夹角小于180°。
叉积的计算方式:A(xa,ya) X B(xb,yb)==xa*yb-ya*xb;
代码:
#include<iostream>
#include<algorithm>
using namespace std;
int xa, ya, xb, yb, xc, yc, xd, yd;
int cc(int xa, int ya, int xb, int yb)
{
return xa * yb - ya * xb;
}
int abc()
{
if(cc(xa - xb, ya - yb, xc - xb, yc - yb)<0)
return 1;
return 0;
}
int bcd()
{
if (cc(xb - xc, yb - yc, xd - xc, yd - yc)<0)
return 1;
return 0;
}
int cda()
{
if (cc(xc - xd, yc - yd, xa - xd, ya - yd)<0)
return 1;
return 0;
}
int dab()
{
if (cc(xd - xa, yd - ya, xb - xa, yb - ya)<0)
return 1;
return 0;
}
int main()
{
cin >> xa >> ya >> xb >> yb >> xc >> yc >> xd >> yd;
if (abc() && cda() && dab() && bcd())
cout << "Yes";
else
cout << "No";
return 0;
}