Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
From bottom to top
1.keep an array to store the result.
2.First Round: res[0] = 4, res[1] = 1, res[2] = 8, res[3] = 3
3.Second Round: res[0] = min(res[0], res[1]) + currentValue. Repeat until reach the top level of the triangle.
4. res[0] is the result.
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle ==null || triangle.size() == 0)
return Integer.MIN_VALUE;
int[] res = new int[triangle.size()];
//initialize
for (int i = 0; i < triangle.size(); i++) {
res[i] = triangle.get(triangle.size() - 1).get(i);
}
//iteration
for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
res[j] = Math.min(res[j], res[j + 1]) + triangle.get(i).get(j);
}
}
return res[0];
}
}
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle ==null || triangle.size() == 0)
return Integer.MIN_VALUE;
int[] res = new int[triangle.size()];
//initialize
for (int i = 0; i < triangle.size(); i++) {
res[i] = triangle.get(triangle.size() - 1).get(i);
}
//iteration
for (int i = triangle.size() - 2; i >= 0; i--) {
for (int j = 0; j <= i; j++) {
res[j] = Math.min(res[j], res[j + 1]) + triangle.get(i).get(j);
}
}
return res[0];
}
}