1bit等于多少字节,换算方法?

1比特(bit)=0.125字节(b)
1B就是1个字节。
Byte、KB、B、MB、GB之间的关系是:
Bit——比特
B ——字节
KB——千字节
MB——兆字节
GB——吉字节
TB——太字节
1B=8 Bit

计算机64位的 = 8个字节

<think>嗯,用户问的是异步FIFO为什么用格雷码,并且RAM地址多1bit的原因。我需要先回忆相关知识,然后一步步解释清楚。 首先,异步FIFO用于跨时钟域的数据传输,所以读写指针需要在不同时钟域同步。这里的关键问题是同步时的亚稳态和指针比较。直接传递二进制计数器会因为多位变化导致同步错误,比如从0111变到1000,多位变化可能被错误捕获。格雷码每次只变一位,可以避免这个问题,所以读写指针用格雷码是对的。 然后,为什么地址要多1bit?可能涉及到空满状态的判断。异步FIFO的空满判断是通过比较读写指针的地址。假设RAM深度是N,地址位宽是n,那么N=2^n。如果地址用n位,那么读写指针循环时,如何区分空和满?比如,当写指针追上读指针,可能和空的情况一样。这时候需要多一个bit来扩展地址,使得当最高位不同而其他位相同时,判断为满。例如,深度8的话,地址用4位,其中低3位是实际地址,最高位用来判断是否绕了一圈。 那具体怎么推导出来的呢?假设RAM深度是2^N,地址位宽N。如果读写指针都用N位,当写指针比读指针多一圈时,他们的低N位可能相同,这样无法判断满。所以需要增加一位,变成N+1位,其中低N位是实际地址,最高位用来表示是否循环过一次。当读写指针的最高位不同,而低N位相同时,说明写指针已经超过读指针一圈,此时判断为满。空的条件则是读写指针的N+1位全相同。 然后,格雷码的作用是同步时减少亚稳态的影响,但格雷码的递增也需要满足每次只有一位变化。因此,地址多一位后,格雷码的转换也需要正确处理。例如,当指针从0到1到2...到2^N-1,然后回到0时,最高位会翻转,这时候格雷码的转换需要保证每次只变一位。这可能需要将二进制转格雷码时,用(addr >> 1) ^ addr,这样即使地址多一位,转换后的格雷码依然每次只变一位。 总结一下,异步FIFO使用格雷码是为了跨时钟域同步时减少亚稳态问题,而地址多1bit是为了正确判断空满状态,通过扩展地址位来区分是否绕了一圈。这个想法来源于二进制指针在循环时无法区分满和空的情况,因此需要额外的位来扩展比较,结合格雷码的同步优势,确保可靠的数据传输。</think>### 异步FIFO使用格雷码地址多1bit的推导过程 #### **1. 异步FIFO的核心问题** 异步FIFO需要解决**跨时钟域同步**和**空满状态判断**两大问题: - **跨时钟域问题**:读写指针需要在不同时钟域之间传递,直接传递二进制计数器可能因多位跳变导致同步错误。 - **空满判断问题**:需区分“写指针追上读指针”(满)和“读指针追上写指针”(空)。 --- #### **2. 为什么用格雷码?** **关键需求**:减少跨时钟域同步时的亚稳态风险。 - **二进制计数器的缺陷** 例如,二进制地址从`0111`(7)变为`1000`(8)时,4位同时跳变。若此时同步到另一时钟域,可能捕获到中间状态(如`1111`),导致严重错误。 - **格雷码的特性** **每次递增仅1位变化**(如`001→011→010→110`)。即使同步时发生亚稳态,最多只会导致±1的误差,而不会完全错误。 - **同步机制** 读写指针需转换为格雷码后传递到对方时钟域,通过两级触发器同步。格雷码的单比特跳变特性大幅降低了同步失败的概率。 --- #### **3. 为什么地址多1bit?** **关键需求**:正确判断空满状态,避免循环覆盖。 - **地址位宽深度的关系** 假设RAM深度为$N=2^n$,若直接用$n$位地址: - 写指针和读指针均为$n$位,取值范围为$0$到$N-1$。 - 当写指针和读指针相等时,可能是“空”状态;但当写指针比读指针多绕一圈(即$N$次写入)时,指针也会相等,此时应为“满”状态。仅靠$n$位无法区分这两种情况。 - **扩展1bit的解决方案** **地址位宽设为$n+1$位**,实际地址取低$n$位,最高位用于标记“绕圈”: - **空条件**:读写指针的$n+1$位完全相等。 - **满条件**:读写指针的高位不同,低$n$位相等。 **例如**($n=3$,深度$8$): - 写指针:`1_000`(绕圈后回到0,高位为1) - 读指针:`0_000`(未绕圈) - 此时低3位相等,高位不同,判断为满。 --- #### **4. 推导过程** **步骤1:空满判断的数学表达** - **空条件**:$P_{\text{write}} = P_{\text{read}}$ - **满条件**:$P_{\text{write}} - P_{\text{read}} = N$(即写指针比读指针多绕一圈) **步骤2:地址位扩展** - 将$n$位地址扩展为$n+1$位,形成环形计数: 地址范围为$0$到$2^{n+1}-1$,但实际有效深度仍为$N=2^n$。 - **空条件**:$P_{\text{write}} = P_{\text{read}}$ - **满条件**:$P_{\text{write}} - P_{\text{read}} = N$,即$P_{\text{write}} = P_{\text{read}} + N$ 此时,$P_{\text{write}}$和$P_{\text{read}}$的二进制关系为: $$P_{\text{write}} = P_{\text{read}} \oplus (N \ll 1)$$ (即最高位不同,低$n$位相同) **步骤3:结合格雷码** - 将扩展后的$n+1$位二进制指针转换为格雷码: $$G_{\text{ptr}} = (B_{\text{ptr}} \gg 1) \oplus B_{\text{ptr}}$$ - 格雷码的空满判断逻辑不变,但同步时仅需传递单比特跳变的格雷码。 --- #### **5. 总结** - **格雷码**:解决跨时钟域同步的多比特跳变问题。 - **地址多1bit**:通过扩展地址位宽,明确区分空满状态。 - **组合设计**:两者结合,既保证了同步可靠性,又实现了准确的空满判断。 --- **示意图**: ``` RAM深度=8(n=3),地址位宽=4(n+1=4) 写指针:1000(实际地址0,已绕圈) 读指针:0000(实际地址0,未绕圈) 满条件成立:高位不同,低3位相同 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值