Problem Description
子集和问题的一个实例为〈S,t〉。其中,S={ x1 , x2 ,…,xn }是一个正整数的集合,c是一个正整数。子集和问题判定是否存在S的一个子集S1,使得:
。
试设计一个解子集和问题的回溯法。
对于给定的正整数的集合S={ x1 , x2 ,…,xn }和正整数c,计算S 的一个子集S1,使得:
。
Input
输入数据的第1 行有2 个正整数n 和c(n≤10000,c≤10000000),n 表示S 的大小,c是子集和的目标值。接下来的1 行中,有n个正整数,表示集合S中的元素。
Output
将子集和问题的解输出。当问题无解时,输出“No Solution!”。
Sample Input
5 10 2 2 6 5 4
Sample Output
2 2 6
看到这道题时,我是拒绝的... 这数据量,不会超时吗.. 不过除了这样做好像也没别的办法了
事实证明,剪枝写好了还真不会超时。不知道是不是太久没写DFS了,写得好费劲,,感觉和之前写的一点也不一样了
#include <bits/stdc++.h>
using namespace std;
int n, c;
int s[10010];
bool flag = false;
int ans[10000], k = 0, sum = 0;
void DFS(int i)
{
sum += s[i];
ans[k++] = s[i];
if(sum > c) return;
if(sum == c)
{
flag = true;
return;
}
for(int j = i + 1; j <= n; j++)
{
if(flag) return; //重要!得到结果后就返回,不再进行搜索(不加这句会超时)
DFS(j);
if(!flag)
{
sum -= s[j];
k--;
}
}
}
int main()
{
scanf("%d%d", &n, &c);
int ss = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d", &s[i]);
ss += s[i];
}
//预判
if(ss < c)
{
printf("No Solution!");
return 0;
}
s[0] = 0; //添加一个第0项,方便搜索...
DFS(0);
if(flag)
{
for(int i = 1; i < k; i++)
{
printf("%d", ans[i]);
if(i < k - 1) printf(" ");
}
}
else
printf("No Solution!");
return 0;
}