创建并发缓存

package concurrency.synchronizer;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

interface Compute {
    public Integer compute(Integer key);
}
/**
 * 对于一个较大运算量的缓存来说,这样的效果是远远不够的,因为对于同一个值,会计算两次,
 * 因此,我们想要的就是让后来的线程知道它请求的值正在计算当中,等待计算结束后直接返回计算后
 * 的值就可以了,没有必要再进行一次计算
 * 因此了后第二个改进的版本
 * @author Administrator
 *
 */
public class Cache {
    private static final Map<Integer, Integer> CACHE = new ConcurrentHashMap<Integer, Integer>();
    private static final Compute COMP = new Compute() {
	@Override
	public Integer compute(Integer key) {
	    System.out.println(Thread.currentThread().getName()+"start compute");
	    Integer result = 1;
	    for (int i = 0; i < 10; i++) {
		try {
		    Thread.sleep(100 * 1);
		} catch (InterruptedException e) {
		    e.printStackTrace();
		}
		result *= key;
	    }
	    return result;
	}
    };

    public static Integer getCache(Integer key) {
	Integer retVal = CACHE.get(key);
	if (retVal == null) {
	    retVal = COMP.compute(key);
	    CACHE.put(key, retVal);
	}
	return retVal;
    }

    private static final Cache INSTANCE = new Cache();

    private static final Cache getInstance() {
	return INSTANCE;
    }

    public static void main(String args[]) throws InterruptedException {
	final Cache cache = Cache.getInstance();
	Thread t1 = new Thread("t1"){
	    @Override
	    public void run() {
		Integer key = 10;
		System.out.println(Thread.currentThread().getName()+" get value from cache "+cache.getCache(key));
	    }
	};
	Thread t2 = new Thread("t2"){
	    @Override
	    public void run() {
		Integer key = 10;
		System.out.println(Thread.currentThread().getName()+" get value from cache "+cache.getCache(key));
	    }
	};
	t1.start();
	t2.start();
    }
}

、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

package concurrency.synchronizer;

import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

public class Cache2 {
    private static final ConcurrentMap<Integer, FutureTask<Integer>> CACHE = new ConcurrentHashMap<Integer, FutureTask<Integer>>();
    private static final Compute COMP = new Compute() {
	@Override
	public Integer compute(Integer key) {
	    System.out.println(Thread.currentThread().getName()+"start compute");
	    Integer result = 1;
	    for (int i = 0; i < 10; i++) {
		try {
		    Thread.sleep(100 * 1);
		} catch (InterruptedException e) {
		    e.printStackTrace();
		}
		result *= key;
	    }
	    return result;
	}
    };
    public static Integer getCache(final Integer key) throws InterruptedException{
	FutureTask<Integer> task = CACHE.get(key);
	if(task  ==null){
	      task = new FutureTask<Integer>(new Callable<Integer>() {
		  @Override
		public Integer call() throws Exception {
		      return COMP.compute(key);
		}
	      }){};
	     FutureTask<Integer> preTask =  CACHE.putIfAbsent(key, task);
	     if(preTask == null){ // 说明被加进去了
		 task.run();
	     }else{
		 task = preTask;
	     }
	}
	try {
	    return task.get();
	} catch (CancellationException e) {
	    CACHE.remove(key);
	    return null;
	} catch (ExecutionException e) {
	    throw new RuntimeException(e);
	}
    }

    private Cache2() {

    }

    public static final Cache2 INSTANCE = new Cache2();

    private static Cache2 getInstance() {
	return INSTANCE;
    }

    public static void main(String args[]) {
	final Cache2 cache = Cache2.getInstance();
	Thread t1 = new Thread(){
	    @Override
	    public void run() {
		Integer key  = 10;
		try {
		    System.out.println(Thread.currentThread().getName()+cache.getCache(key));
		} catch (InterruptedException e) {
		    // TODO Auto-generated catch block
		    e.printStackTrace();
		}
	    }
	};
	Thread t2 = new Thread(){
	  @Override
	public void run() {
	      Integer key = 10;
	      try {
		System.out.println(Thread.currentThread().getName()+cache.getCache(key));
	    } catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	    }
	}  
	};
	t1.start();
	t2.start();
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值