我们常常使用数据库的索引来对大表提供操作性能上的优化。
其根本原因在提高数据的效率,减少寻道时间,具体可以参考机械硬盘的结构。
数据库的索引从实现的数据结构上分为散列、B树、B+树、位图。
首先我们谈谈散列:其实散列更多的是用在文件系统中。通过散列函数,将数据分散到不同的逻辑区域上去。从而完成数据根据某个属性通过散列函数组织起来,在查找的时候,
通过这个特性,能够快速的缩小数据查找范围,从而达到快速查找的目的。
我们谈谈B+树(另外B*树、B+树在搜索引擎里面常用的数据结构):
B+树的方式实现的索引,主要是通过B+树将数据的ROWID与B+树的叶子节点映射起来,每次对建有B+树类型实现的索引的字段操作的时候,有可能会对B+树做删除、添加以及分裂等操
作,从而达到了B+树索引的重构。我们通常在数据库中使用的大多数索引都是通过这种数据结构来完成的。
最后谈谈位图:对于以该实现所建立的索引字段具有如下特点:数据枚举范围小,很少变化,以及一些边缘化的数据,比如:性别、省份名、常见颜色等。通过位图在做AND、OR的
时候,效率是很好的。
数据库(oracle)的索引从逻辑上分为:
Single column 单行索引
Concatenated 多行索引
Unique 唯一索引
NonUnique 非唯一索引
Function-based函数索引
Domain 域索引
B树:
适合与大量的增、删、改(OLTP);
不能用包含OR操作符的查询;
适合高基数的列(唯一值多)
典型的树状结构;
每个结点都是数据块;
大多都是物理上一层、两层或三层不定,逻辑上三层;
叶子块数据是排序的,从左向右递增;
在分支块和根块中放的是索引的范围;
位图:
适合与决策支持系统;
做UPDATE代价非常高,有可能导致锁竞争;
非常适合OR操作符的查询;
基数比较少的时候才能建位图索引;
上面有任何错误的地方,欢迎大家帮忙纠正