基于物品的协同过滤算法(ItemCF)

1.定义

  基于物品的协同过滤(item-based collaborative filtering)算法是目前业界应用最多的算法。ItemCF给用户推荐那些和他们之前喜欢的物品相似的物品,用户A 喜欢了一个物品s集合,那么推荐的时候就把与物品s集合里最相似的前N个物品推荐给用户A。ItemCF算法并不利用物品的内容属性计算物品之间的相似度,它主要通过分析用户的行为记录计算物品之间的相似度。该算法认为,物品A和物品B具有很大的相似度是因为喜欢物品A的用户大都也喜欢物品B。
基于物品的协同过滤算法主要分为两步。

2.第一步:计算物品之间的相似度

  购买了该商品的用户也经常购买的其他商品。从这句话的定义出发,我们可以用下面的公式定义物品的相似度:
在这里插入图片描述
  分母 ∣ N ( i ) ∣ |N(i)| N(i)是喜欢物品 i i i的用户数,而分子 ∣ N ( i ) ⋂ N ( j ) ∣ |N(i)\bigcap N(j)| N(i)N(j)是同时喜欢物品 i i i和物品 j j j的用户数。因此,上述公式可以理解为喜欢物品i的用户中有多少比例的用户也喜欢物品 j j j
  上述公式虽然看起来很有道理,但是却存在一个问题。如果物品j很热门,很多人都喜欢,那么Wij就会很大,接近1。因此,该公式会造成任何物品都会和热门的物品有很大的相似度,这对于致力于挖掘长尾信息的推荐系统来说显然不是一个好的特性。为了避免推荐出热门的物品,可以用下面的公式:
在这里插入图片描述
  这个公式惩罚了物品j的权重,因此减轻了热门物品会和很多物品相似的可能性。
  从上面的定义可以看到,在协同过滤中两个物品产生相似度是因为它们共同被很多用户喜欢,也就是说每个用户都可以通过他们的历史兴趣列表给物品“贡献”相似度。这里面蕴涵着一个假设,就是每个用户的兴趣都局限在某几个方面,因此如果两个物品属于一个用户的兴趣列表,那么这两个物品可能就属于有限的几个领域,而如果两个物品属于很多用户的兴趣列表,那么它们就可能属于同一个领域,因而有很大的相似度。
  和UserCF算法类似,用ItemCF算法计算物品相似度时也可以首先建立用户—物品倒排表(即对每个用户建立一个包含他喜欢的物品的列表),然后对于每个用户,将他物品列表中的物品两两在共现矩阵C中加1。
在这里插入图片描述
  上图中最左边是输入的用户行为记录,每一行代表一个用户感兴趣的物品集合。然后,对于每个物品集合,我们将里面的物品两两加一,得到一个矩阵。最终将这些矩阵相加得到上面的C矩阵。其中C[i][j]记录了同时喜欢物品i和物品j的用户数。最后,将C矩阵归一化可以得到物品之间的余弦相似度矩阵W。

3.第二步:根据物品的相似度和用户的历史行为给用户生成推荐列表

  在得到物品之间的相似度后, ItemCF通过如下公式计算用户u对一个物品j的兴趣:

  这里N(u)是用户喜欢的物品的集合, S(j,K)是和物品j最相似的K个物品的集合, w j i w_{ji} wji是物品j和i的相似度, r u i r_{ui} rui是用户u对物品i的兴趣。(对于隐反馈数据集,如果用户u对物品i有过行为,即可令 r u i = 1 r_{ui}=1 rui=1。)该公式的含义是,和用户历史上感兴趣的物品越相似的物品,越有可能在用户的推荐列表中获得比较高的排名。
  下图是一个基于物品推荐的简单例子。该例子中,用户喜欢《C++ Primer中文版》和《编程之美》两本书。然后ItemCF会为这两本书分别找出和它们最相似的3本书,然后根据公式的定义计算用户对每本书的感兴趣程度。比如, ItemCF给用户推荐《算法导论》,是因为这本书和《C++Primer中文版》相似,相似度为0.4,而且这本书也和《编程之美》相似,相似度是0.5。考虑到用户对《C++ Primer中文版》的兴趣度是1.3,对《编程之美》的兴趣度是0.9,那么用户对《算法导论》的兴趣度就是1.3 × 0.4 + 0.9×0.5 = 0.97。
在这里插入图片描述
  从这个例子可以看到, ItemCF的一个优势就是可以提供推荐解释,即利用用户历史上喜欢的物品为现在的推荐结果进行解释。

4.用户活跃度对物品相似度的影响

  假设有这么一个用户,他是开书店的,并且买了当当网上80%的书准备用来自己卖。那么,他的购物车里包含当当网80%的书。假设当当网有100万本书,也就是说他买了80万本。从前面对ItemCF的讨论可以看到,这意味着因为存在这么一个用户,有80万本书两两之间就产生了相似度,也就是说,内存里即将诞生一个80万乘80万的稠密矩阵。
  另外可以看到,这个用户虽然活跃,但是买这些书并非都是出于自身的兴趣,而且这些书覆盖了当当网图书的很多领域,所以这个用户对于他所购买书的两两相似度的贡献应该远远小于一个只买了十几本自己喜欢的书的文学青年。
  John S. Breese在论文中提出了一个称为IUF(Inverse User Frequence),即用户活跃度对数的倒数的参数,他也认为活跃用户对物品相似度的贡献应该小于不活跃的用户,他提出应该增加IUF参数来修正物品相似度的计算公式:
在这里插入图片描述
当然,上面的公式只是对活跃用户做了一种软性的惩罚。

5.物品相似度的归一化

  Karypis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化,可以提高推荐的准确率。其研究表明,如果已经得到了物品相似度矩阵w,那么可以用如下公式得到归一化之后的相似度矩阵w’:
在这里插入图片描述
  归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。

6.UserCF和ItemCF比较

  首先回顾一下UserCF算法和ItemCF算法的推荐原理。 UserCF给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品,而ItemCF给用户推荐那些和他之前喜欢的物品类似的物品。从这个算法的原理可以看到, UserCF的推荐结果着重于反映和用户兴趣相似的小群体的热点,而ItemCF的推荐结果着重于维系用户的历史兴趣。换句话说, UserCF的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反映了用户自己的兴趣传承。
  在新闻网站中,用户的兴趣不是特别细化,绝大多数用户都喜欢看热门的新闻。即使是个性化,也是比较粗粒度的,比如有些用户喜欢体育新闻,有些喜欢社会新闻,而特别细粒度的个性化一般是不存在的。比方说,很少有用户只看某个话题的新闻,主要是因为这个话题不可能保证每天都有新的消息,而这个用户却是每天都要看新闻的。因此,个性化新闻推荐更加强调抓住新闻热点,热门程度和时效性是个性化新闻推荐的重点,而个性化相对于这两点略显次要。因此UserCF可以给用户推荐和他有相似爱好的一群其他用户今天都在看的新闻,这样在抓住热点和时效性的同时,保证了一定程度的个性化。这是Digg在新闻推荐中使用UserCF的最重要原因。
  UserCF适合用于新闻推荐的另一个原因是从技术角度考量的。因为作为一种物品,新闻的更新非常快,每时每刻都有新内容出现,而ItemCF需要维护一张物品相关度的表,如果物品更新很快,那么这张表也需要很快更新,这在技术上很难实现。绝大多数物品相关度表都只能做到一天一次更新,这在新闻领域是不可以接受的。而UserCF只需要用户相似性表,虽然UserCF对于新用户也需要更新相似度表,但在新闻网站中,物品的更新速度远远快于新用户的加入速度,而且对于新用户,完全可以给他推荐最热门的新闻,因此UserCF显然是利大于弊。
  但是,在图书、电子商务和电影网站,比如亚马逊、豆瓣、 Netflix中, ItemCF则能极大地发挥优势。首先,在这些网站中,用户的兴趣是比较固定和持久的。一个技术人员可能都是在购买技术方面的书,而且他们对书的热门程度并不是那么敏感,事实上越是资深的技术人员,他们看的书就越可能不热门。此外,这些系统中的用户大都不太需要流行度来辅助他们判断一个物品的好坏,而是可以通过自己熟悉领域的知识自己判断物品的质量。因此,这些网站中个性化推荐的任务是帮助用户发现和他研究领域相关的物品。因此, ItemCF算法成为了这些网站的首选算法。此外,这些网站的物品更新速度不会特别快,一天一次更新物品相似度矩阵对它们来说不会造成太大的损失,是可以接受的。

  • 14
    点赞
  • 154
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值