【算法设计与数据结构】为何程序员喜欢将INF设置为0x3f3f3f3f?

为何程序员将INF设为0x3f3f3f3f

在算法竞赛中,我们常常需要用到一个“无穷大”的值,对于我来说,大多数时间我会根据具体问题取一个99999999之类的数(显得很不专业啊!)

在网上看别人代码的时候,经常会看到他们把INF设为0x7fffffff,奇怪为什么设一个这么奇怪的十六进制数,一查才知道,因为这是32-bit int的最大值。如果这个无穷大只用于一般的比较(比如求最小值时min变量的初值),那么0x7fffffff确实是一个完美的选择。

但是更多情况下,0x7fffffff并不是一个好的选择,比如在最短路径算法中,我们使用松弛操作:

if (d[u]+w[u][v]<d[v]) d[v]=d[u]+w[u][v];

如果u,v之间没有边,那么w[u][v]=INF,如果我们的INF取0x7fffffff,那么d[u]+w[u][v]会溢出而变成负数,我们的松弛操作便出错了!

准确来说,0x7fffffff不能满足“无穷大加一个有穷的数依然是无穷大”这个条件,它会变成了一个很小的负数。

更进一步的,如果有一个数能够满足“无穷大加无穷大依然是无穷大”,那么就更好了!

前阵子无意中看到了一个不一样的取值,INF=0x3f3f3f3f,这时我又郁闷了,这个值又代表的是什么?于是我去寻找答案,发现这个值的设置真的很精妙!

0x3f3f3f3f的十进制是1061109567,是10^9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。
另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了“无穷大加一个有穷的数依然是无穷大”),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们“无穷大加无穷大还是无穷大”的需求。

最后,0x3f3f3f3f还能给我们带来一个意想不到的额外好处:
如果我们想要将某个数组清零,我们通常会使用memset(a,0,sizeof(a)),方便又高效,但是当我们想将某个数组全部赋值为无穷大时,就不能使用memset函数而得自己写循环了,因为memset是按字节操作的,它能够对数组清零是因为0的每个字节都是0(一般我们只有赋值为-1和0的时候才使用它)。现在好了,如果我们将无穷大设为0x3f3f3f3f,那么奇迹就发生了,0x3f3f3f3f的每个字节都是0x3f!所以要把一段内存全部置为无穷大,我们只需要memset(a,0x3f,sizeof(a))。

所以在通常的场合下,0x3f3f3f3f真的是一个非常棒的选择!

在代码 `const int inf = 0x3f3f3f3f;` 中,`const` 关键字用于定义常量,意味着该变量一旦被赋值就不能再被修改。`int` 表示变量的类型为整数。`0x3f3f3f3f` 是一个十六进制的数值,将其转换为十进制是 `1061109567`。 其用途主要体现在以下几个方面: - **初始化距离或权值**:在图论算法中,如 Dijkstra 算法、Floyd-Warshall 算法等,常常需要对距离数组进行初始化,将所有距离初始化为一个极大值,表示初始时这些节点之间的距离是未知的或者是无穷远的。由于 `0x3f3f3f3f` 是一个足够大的数,并且在进行加法运算时不容易溢出,所以可以作为一个合适的初始值。例如在引用[3]中,`fill(dp, dp + N, inf);` 就是将 `dp` 数组初始化为 `inf`,用于存储从起点到各个节点的最短距离。 - **比较和更新**:在算法中,当需要比较和更新某些值时,使用 `0x3f3f3f3f` 作为初始值可以方便地进行比较和更新操作。例如在寻找最小值的过程中,初始将最小值设为 `inf`,然后在遍历过程中不断更新这个最小值。 以下是引用[3]中使用 `inf` 的部分代码示例: ```cpp #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<cstdio> #include<queue> #include<vector> using namespace std; const int N = 1111; const int inf = 0x3f3f3f3f; int vis[N],dp[N]; struct P { int c,v; P(int c,int v):c(c),v(v){} P(){} bool operator < (const P& t1)const { return c>t1.c; } }; priority_queue<P>que; vector<P>vec[N]; int n,m; int main() { int i,j,u,v,c; scanf("%d%d",&m,&n); while(m--) { scanf("%d%d%d",&u,&v,&c); vec[u].push_back(P(c,v)); vec[v].push_back(P(c,u)); } fill(dp,dp+N,inf); // 将 dp 数组初始化为 inf P p = P(0,1); dp[1]=0; que.push(p); while(!que.empty()) { p = que.top(); que.pop(); if(vis[p.v]) continue; vis[p.v]=1; for(i=0;i<vec[p.v].size();i++) { P tmp = vec[p.v][i]; if(dp[tmp.v]>dp[p.v]+tmp.c) { dp[tmp.v]=dp[p.v]+tmp.c; que.push(P(dp[tmp.v],tmp.v)); } } } printf("%d\n",dp[n]); return 0; } ```
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值