[quote]
先引入本文需要的数学工具包
commons-math-2.0.jar
[url=http://commons.apache.org/math/]Apache Commons Math Home[/url]
[url=http://commons.apache.org/math/api-2.0/index.html]Apache Commons Math 2.0 Javadoc[/url]
[/quote]
[quote="我"]
本文只为用java描述GM(1,1)预测模型的实现过程,未对代码进行抽象,各位且当做一个简单的范例
[/quote]
由上一篇blog 灰色模型相关---GM(1,1)模型的数学基础 可知,GM(1,1)模型的内涵式如下:
在java中可用二维数组粗略的描述上述矩阵B和yN,再由Commons-math提供的矩阵构造方法构造出矩阵对象用于运算,即可得出[a,b]的值
先引入本文需要的数学工具包
commons-math-2.0.jar
[url=http://commons.apache.org/math/]Apache Commons Math Home[/url]
[url=http://commons.apache.org/math/api-2.0/index.html]Apache Commons Math 2.0 Javadoc[/url]
[/quote]
[quote="我"]
本文只为用java描述GM(1,1)预测模型的实现过程,未对代码进行抽象,各位且当做一个简单的范例
[/quote]
由上一篇blog 灰色模型相关---GM(1,1)模型的数学基础 可知,GM(1,1)模型的内涵式如下:
R(k) = u^(k-2) . v
其中u = (1 - 0.5a)/(1 + 0.5a),v = (b - aX(1))/(1 + 0.5a)
而a,b由矩阵方程 [a,b] = ((BT . B)^-1) . BT . yN 运算出来,矩阵B和yN的结构如下:
yN = [X(1), X(2), ..., X(n)]T
[-Z(2), 1]
[-Z(3), 1]
B = [... ... ]
[-Z(n), 1]
各变量的表达式可见 GM(1,1)模型的数学基础 一文
在java中可用二维数组粗略的描述上述矩阵B和yN,再由Commons-math提供的矩阵构造方法构造出矩阵对象用于运算,即可得出[a,b]的值
/**
* 原始数据的累加数列
*/
private double[] AGOX;
/**
* 原始数据数列长度
*/
private int SIZE;
/**
* 原始数据数列
*/
private double[] X;
/**
* 累加矩阵
*/
private double[][] B;
/**
* 常量向量矩阵 由于为单自变量的灰色模型,常量向量因此亦为Nx1矩阵
*/
private double[][] YN;
/**
* 预测值数列
*/
private double[] FC;
/**
* 误差数列
*/
private double[] BIAS;
private void init(){
...
//构造B和yN矩阵代码片段
for (int i = 0; i < SIZE - 1; i++) {
B[i][0] = -(AGOX[i] + AGOX[i + 1]) / 2;
B[i][1] = 1;
YN[i][0] = X[i+1];
}
...
}