国科大《自然语言处理基础》期末考试真题回忆

授课教师:胡玥 曹亚男

文档由中国科学院大学-网络空间安全学院-网安2006班杨桂淼、林彤、乔宇轩、刘熙宸

整理完成

来嘞您呐!没错,就是为的这点醋包的这顿饺子~

《自然语言处理基础》最新真题复盘

文档整理不易,如果对你有帮助,烦请点个赞吧^_^

我们总结的飞书复习文档:https://ncnjbpvneffw.feishu.cn/wiki/U7OswO7OViqMgFkmTjlcYVxtn4e?from=from_copylink

课程架构总览

最好的复习方法就是任务导向,这学期学完了这门课,要知道NLP领域内基本的任务类型是什么、核心技术有哪些、解决不同任务所对应的模型方法是什么。

课程架构

复习指南

NLP各范式概念

NLP机器学习任务经历了五次范式变迁:

第一范式 - 概率统计时代:特征工程+算法

第二范式 - 深度学习时代:自动获取特征(表示学习)端到端分类

第三范式 - 预训练 + 精调范式:大量预训练数据 + 少量任务数据

第四范式 - 预训练 + 提示范式:少量/无任务数据

第五范式 - 大模型AGI

2024年秋学期-期末考试真题回忆

家人们,能记住多少算多少哈哈哈哈~

考试时间:2025年1月6日

选择题 10 * 1

1. CBOW训练的是什么

2. skip_gram训练的是什么

3. 激活函数有什么作用:增强网络表达能力

4. 指针网络的作用:不仅可以用于机器翻译任务,还可以用于其他任务

5. 词向量之间相似的原因解释

6. Attention的输入

7. top-k采样、贪心解码相关

8. Chatgpt相关的问题不正确的是:每次使用都是先微调

还有两个记不起来了~

填空题 10*2

1.机器学习三要素

2. 池化层作用是什么

3. 什么是硬注意力

4. BART中为什么要使用位置嵌入

5. Seq2Seq序列生成模型的三种类型

6. CRF的作用是什么

7. 生成任务中常用的评价指标是什么

8. RNN训练方法是什么

9. 文本匹配常用的建模方法

10.  什么是曝光偏差

简答题 5*6

1. 什么是BPE算法?简要概述其工作原理

2. Transformer实现并行处理所用到的技术有哪些?

3. 神经网络语言语言模型存在的问题?使用RNN+词向量的方式是如何解决这些问题的

4. 简述第二、三、四、五范式特点和应用场景

5. 简述传统的事件抽取任务,并给出传统的事件抽取的建模任务有哪些?具体实现步骤

计算题 10*1

维特比算法

设计题1 12*1

题干记得是:“这是一家正宗的俄式西餐,味道浓厚,环境很好”

(1) 写出属性情感输出

(2) 设计一个情感属性关联模型,解释其原理,画出模型图

设计题2 18*1

(1) 检索式问答系统包含哪几个部分?作用是什么?

(2) 设计一个检索式问答系统,并解释其原理

2024前考过的简答题

Attention是什么?其在NLP领域有什么应用?优势是什么?

Attention 是一种注意力机制,用于让模型在处理输入序列时,动态地关注输入中的某些部分,而忽略其他部分。它通过计算输入序列中每个元素与目标输出的相关性分数(注意力权重),来决定哪些输入部分对当前任务最重要。

应用领域:

  • 机器翻译:如 Transformer 中的自注意力机制(Self-Attention)。

  • 文本摘要:提取文本中最重要的信息。

  • 阅读理解与问答系统:关注问题相关的文本片段。

  • 图像字幕生成:结合图像与语言,关注特定的图像区域生成描述。

优势:

  • 捕获长距离依赖关系:相比 RNN,Attention 可以更有效地捕获输入序列中远距离的依赖。

  • 并行化计算:特别是 Transformer 中的 Attention,计算可以高效并行化。

  • 增强模型解释性:Attention 提供了直观的可视化权重,方便观察模型重点关注的输入部分。

指针网络与指针生成网络的异同

相同点:都使用注意力机制,能够在输入中选择重要的部分。

不同点:

  • 指针网络用于输出索引(如位置),而指针生成网络既可选择输入的词,也可从词汇表生成新词。

  • 指针生成网络更复杂,结合了生成机制与复制机制

预训练第三范式和预训练第四范式异同

预训练第三范式为预训练+精调范式,预训练第四范式为预训练+提示+预测范式

参数调整方面:第三范式需要对下游任务的模型参数进行精调,第四范式不调整模型参数,通过提示控制输入实现任务适配。

训练成本方面:第三范式每个任务需要精调,训练成本较高;第四范式不需要任务精调,直接用预训练模型推断,成本低。

性能表现方面:第三范式对于任务数据充足的场景,精调性能通常优于提示方法;第四范式在数据不足场景下,提示方法可以更快部署、实现更高的效果。

灵活性方面:第三范式每次训练生成专属任务模型,适合特定任务优化;第四范式模型泛化性强,可以快速适配多种任务。

RNN语言模型与DNN语言模型相比有什么优势

RNN语言模型的优势:

  1. 适合处理序列数据:RNN 天然能够处理变长输入序列,捕获上下文信息。

  2. 记忆历史信息:通过隐藏状态 hth_tht 能够记忆之前的输入,建模长短依赖关系。

  3. 动态序列建模:在生成任务中,RNN 能逐步生成序列,不需要固定输入长度。

GPT与BERT异同

相同点:两者都是用了Transformer架构,都使用自注意力机制(Self-Attention)来捕获序列的上下文依赖。

不同点:

  • GPT 只使用解码器部分,而 BERT 只使用编码器部分

  • GPT使用自回归语言模型预测下一个词,BERT使用遮掩语言模型预测遮掩的词语

  • GPT为单项输入,BERT为双向输入

词向量的特点是什么?在NLP领域有什么价值?

词向量的特点:

  1. 稠密性:词向量是低维稠密向量,相较于传统的独热编码(One-Hot Encoding),更高效。

  2. 语义相似性:相似词的向量在嵌入空间中距离更近。

  3. 可训练性:词向量是通过模型(如 Word2Vec、GloVe、FastText)从大规模语料中学习得到的。

NLP 领域的价值:

  • 降低维度:将高维的离散词表转化为低维稠密向量,减少计算复杂度。

  • 捕获语义关系:词向量能够反映词的语义相似性和上下文关系。

  • 迁移学习:预训练的词向量可以作为多种 NLP 任务(如分类、命名实体识别)的基础,提升下游任务性能。

  • 丰富上下文信息:通过上下文训练的动态词向量(如 ELMo、BERT)进一步捕获词的多义性和上下文依赖性。

浓缩版总结内容欢迎访问博客:自然语言处理基础总结复习 - munger写字的地方

参考资料与致谢

胡玥 曹亚男.中国科学院大学网络空间安全学院课程-《自然语言处理基础》

李宏毅.机器学习教程

邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020.

B站-风骨散人Chiam学长的复习资料:2021 年国科大NLP自然语言处理(胡玥老师)考试及部分答案 - 哔哩哔哩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mungeryang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值