是一个概率的递推:go[j][i]=(go[j][i-1]+go[j-i][i])%N;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctype.h>
#include<vector>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<string>
#include<stack>
using namespace std;
#define N 1000007
int go[101][101];
int main()
{
int i,j,k;
for (i=1;i<=100;i++)
go[i][1]=1,go[1][i]=1,go[0][i]=go[i][0]=1;
go[0][0]=1;
for (j=2;j<=100;j++)
{
for (i=2;i<=j;i++)
{
go[j][i]=(go[j][i-1]+go[j-i][i])%N;
}
/*
for (i=2;i<=j/2;i++)
{
go[j][i]=(go[j-i][i]+go[j][i-1])%N;
}
for (;i<j;i++)
{
go[j][i]=(go[j][i-1]+go[j][j-i]-go[j][j-i-1])%N;
}
go[j][i]=(go[j][i-1]+1)%N;
i++;
*/
while (i<101)
{
go[j][i]=go[j][i-1];
i++;
}
}
int n,m;
while (cin>>n>>m)
{
cout<<go[n][m]<<endl;
}
return 0;
}
欢乐到端午
Time Limit: 1000 ms Memory Limit: 65535 kB Solved: 54 Tried: 151
Description
每到端午,beap总要和父母一起包粽子,经过两年的ACM训练,beap总会突发奇想,自己想出一些题目来。因此当他准备把包好粽子放到盘子里的时候,他突然回忆起一个很经典的题目:n个相同的粽子放到m个相同的盘子里(允许盘子为空),有多少种方法呢?(也就是说1,2,1与1,1,2是属于相同的放法)
由于上次遇到这个经典问题都不知道是什么时候,beap已经不知道该如何来解决这个问题,希望你能编写一个程序,替他算出来。
Input
多组测试数据
每组测试数据包含两个整数n,m(0 < n,m <= 100),n代表粽子的个数,m代表盘子的个数。
Output
对于每个n,m,输出答案%1000007。
Sample Input
1 1
2 2
Sample Output
12