就是用阿基里德的扩展原理来做。
最终化简为a*x+b*y=c;
要求的是x为整数,y的整数解,当c不能整除gcd(a,b)时,就会"Impossible"
没有学过,所以看了会书也是很难才免强知道了点,自己太 笨!
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<string>
using namespace std;
// freopen("C://i.txt","r",stdin);
long long x,y,n,m,l;
long long gcd(long long a,long long b)
{
return !b?a:gcd(b,a%b);
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if (!b)
x=1,y=0;
else
exgcd(b,a%b,y,x),y-=(x*(a/b));
}
int main()
{
freopen("c://i.txt","r",stdin);
long long i,j,k;
long long a,b,c;
while (cin>>x>>y>>n>>m>>l)
{
x%=l;
y%=l;
//a*x+b*y=c;
a=m-n;
b=l;
c=x-y;
k=gcd(a,b);
if (c%k)
{
puts("Impossible");
continue;
}
c/=k;
a/=k;
b/=k;
exgcd(a,b,x,y);
x=(c*x)%b;
if (x<0)
x+=b;
printf("%lld\n",x);
}
}
青蛙的约会
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 73037 | Accepted: 12050 |
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
Source