这是一个经典的问题,,当初是暴力过的。现在第一次学着最初等的堆来写。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 1000011
int l;
int tree[N];
int go[N];
void put()
{
for (int i=1;i<=l;i++)
cout<<tree[i]<<' ';
cout<<endl;
}
void add(int k)
{
int i,j;
l++;
tree[l]=k;
i=l/2;
j=l;
while (i && tree[i]>tree[j])
{
swap(tree[i],tree[j]);
j=i;
i/=2;
}
}
void delet()
{
tree[1]=tree[l--];
int i,j;
i=1;
while (i*2<l)
{
if (tree[i*2]<=tree[i*2+1])
{
if (tree[i*2]<tree[i])
{
swap(tree[i*2],tree[i]);
i*=2;
}
else
break;
}
else
{
if (tree[i*2+1]<tree[i])
{
swap(tree[i*2+1],tree[i]);
i=2*i+1;
}
else
break;
}
}
if (i*2==l)
if (tree[i*2]<tree[i])
swap(tree[i*2],tree[i]);
}
int main()
{
int i,j,k;
freopen("C:\in.txt","r",stdin);
int n;
cin>>n;
l=0;
int cur;
for (i=0;i<n;i++)
{
cin>>cur;
add(cur);
}
int temp=n-1;
int ans=0;
while (temp--)
{
i=tree[1];
delet();
j=tree[1];
delet();
ans+=i+j;
add(i+j);
}
cout<<ans<<endl;
return 0;
}
合并果子
Time Limit: 1000 ms Memory Limit: 65535 kB Solved:197 Tried: 1128
Description
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
Input
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
Output
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
Sample Input
3
1 2 9
Sample Output
15
Source
NOIP2004 提高组