支持向量机系列---为什么要引入核函数

本文介绍了支持向量机中引入核函数的原因,当样本线性不可分时,通过映射到高维特征空间使其线性可分。核函数避免了高维计算的‘维数灾难’,通过低维空间的内积计算实现了高维向量的相似度评估,从而在分类问题中寻找相似样本。讨论了核函数的性质和选择对其性能的影响,列举了一些常用的核函数。
摘要由CSDN通过智能技术生成

       前面的算法是针对线性可分的情况,当我们的样本线性不可分的时候怎么办呢?如果我们可以把线性不可分的问题转变成线性可分的问题该有多好!生活就是这么的美妙,我们可以将样本通过一个映射函数把它从原始空间投射到一个更高维的特征空间,使得样本在这特征空间线性可分,如下图所示。



这个时候,我们就可以对这个特征空间使用前面提到的最大化硬间间隔来进行分类。幸运的是,如果原始空间是有限维的,即属性数有限,那么一定存在一个高维特征空间使样本可分。

为了引出解决不可分的方法,我们先导入核函数。这个核函数是什么来头?我们先来看看核函数的定义 :

设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入间X到特征空间F的映射,其中F属于R(m),n<<m。根据核函数技术有:

                                                                                                    K(x,z)=<Φ(x),Φ(z)>                
 其中:<, >为内积,Φ(x)为映射函数。

为了说明核函数的功能,很多资料上都举了下面这个例子,由于它的表述顺序,不少还是不知道核函数的作用,觉得它很抽象,其实我们应该倒过来理解。为什么我要这么说呢?我们来分析一下,到底核函数的作用是什么?

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值