UI 测试难题!自动化识别图片的正确率如何达到100%!

文章介绍了在UI自动化测试中,如何通过RGB转灰度、尺寸调整、图片特征提取和匹配等方法,自动化地检测图片的差异,包括使用OpenCV库的具体实现。讨论了色彩丢失和图片截取带来的误差,并邀请读者参与讨论解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在ui自动化测试领域,会遇到这样的情形:发布一张图片或上传一个头像,如何通过自动化测试的方式判定发布后的图片是否正确呢?又或者,我们如何通过自动化测试的方式判定某网页的某个logo是否与预期的一致呢?也许,你会想,要是能够自动比对图片,将差异化的点在图片上圈出来就好了。相信我,只要你想,就会有。

试想一下,上述情形,像不像我们常玩的“一起来找茬”呢?让我们以具体案例展示如何以自动化的方式“找茬”。

如下所示,图1、图2是我们两张相似图片(暂定图1名为img1,图2名为img2)。我们以图1、图2为例,使用自动化的方法找出两张图片中差异之处。

图片

图1. img1    

图片

图2. img2

方案设计

对于比较图片差异性,我们经常使用的是图片识别的方法。最基本的方法则是:

图片

  • “RGB转灰”将图片转换为灰度图,去除颜色信息干扰;

  • “切割/缩放至相同尺寸”是为了保持一致性、防止失真,避免图片在尺寸变化时产生失真和形变,从而确保图片的质量和准确性,也避免因为图片的尺寸不同,影响判定结果。

    同时,缩放和切割,也可以减少图片处理过程中的计算量,提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值