Flink 生产问题(数据倾斜)

Flink 生产问题(数据倾斜)

问题概述

  • 任务节点频繁出现反压,但是增加并行度后并不能解决问题;
  • 部分节点出现 OOM 异常,原因是大量的数据集中在某个节点上,导致该节点内存被爆,任务失败重启。
产生数据倾斜的原因:
  • 业务上有严重的数据热点,比如滴滴打车的订单数据中北京、上海等几个城市的订单量远远超过其他地区;

  • 技术上大量使用了 KeyBy、GroupBy 等操作,错误的使用了分组 Key,人为产生数据热点。

解决问题思路:
  • 业务上要尽量避免热点 key 的设计,例如可以把北京、上海等热点城市分成不同的区域,并进行单独处理;

  • 技术上出现热点时,要调整方案打散原来的 key,避免直接聚合;。

数据倾斜场景案例和解决方案

数据倾斜场景:

统计各省下单次数(北京、上海等几个城市的订单量远远超过其他地区)

解决思路(二次聚合):
  • 首先把分组的 key 打散,加随机数前缀;
  • 对打散后的数据进行聚合;
  • 把打散的 key 去除随机树前缀还原为真正的 key;
  • 二次 KeyBy 进行结果统计,然后输出。

Java 代码如下:

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Random;

public class OrderCountByProvince {

    public static void main(String[] args) throws Exception {
        // 创建执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 模拟输入数据流:订单 (省份, 下单次数)
        DataStream<Tuple2<String, Integer>> orders = env.fromElements(
            Tuple2.of("Beijing", 1),
            Tuple2.of("Shanghai", 1),
            Tuple2.of("Guangdong", 1),
            Tuple2.of("Beijing", 1),
            Tuple2.of("Shanghai", 1),
            Tuple2.of("Guangdong", 1),
            Tuple2.of("Beijing", 1),
            Tuple2.of("Shanghai", 1)
        );

        // 添加随机前缀,缓解省份热点问题
        DataStream<Tuple2<String, Integer>> ordersWithPrefix = orders
            .map(new AddRandomPrefix());

        // 按带有前缀的省份进行分区统计
        DataStream<Tuple2<String, Integer>> orderCountsWithPrefix = ordersWithPrefix
            .keyBy(order -> order.f0)
            .reduce(new ReduceFunction<Tuple2<String, Integer>>() {
                @Override
                public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) {
                    return Tuple2.of(value1.f0, value1.f1 + value2.f1);
                }
            });

        // 移除随机前缀,合并前缀后的结果
        DataStream<Tuple2<String, Integer>> orderCounts = orderCountsWithPrefix
            .map(new RemoveRandomPrefix())
            .keyBy(order -> order.f0)
            .reduce(new ReduceFunction<Tuple2<String, Integer>>() {
                @Override
                public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) {
                    return Tuple2.of(value1.f0, value1.f1 + value2.f1);
                }
            });

        // 打印结果
        orderCounts.print();

        // 执行任务
        env.execute("Order Count By Province with Hotspot Mitigation");
    }

    // 添加随机前缀的 MapFunction
    public static class AddRandomPrefix implements MapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>> {
        private static final Random random = new Random();

        @Override
        public Tuple2<String, Integer> map(Tuple2<String, Integer> value) throws Exception {
            String randomPrefix = String.valueOf(random.nextInt(10));
            return Tuple2.of(randomPrefix + "-" + value.f0, value.f1);
        }
    }

    // 移除随机前缀的 MapFunction
    public static class RemoveRandomPrefix implements MapFunction<Tuple2<String, Integer>, Tuple2<String, Integer>> {
        @Override
        public Tuple2<String, Integer> map(Tuple2<String, Integer> value) throws Exception {
            String province = value.f0.split("-", 2)[1];
            return Tuple2.of(province, value.f1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值