bzoj 1003 [ZJOI2006] 物流运输trans 题解

转载请注明:http://blog.csdn.net/jiangshibiao/article/details/23875623

【原题】

1003: [ZJOI2006]物流运输trans

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2893   Solved: 1149
[ Submit][ Status]

Description

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

Input

第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1 < = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

Output

包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

Sample Output
32

HINT

前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32


【分析】感觉着是一道很好的题目,用到了最短路+DP的思想。我们设f[i]表示到第i天的最小费用,那么转移就是f[i]=min(f[i],f[j]+cost[j+1][i]+k)。其中cost[i][j]表示从i到j连续选某一条路的最小费用,这个可以预处理来完成。在预处理最短路的时候,还有一个限制条件,就是某个点在某天可能不能走。

【最初代码】

#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 1010580540
#define N 25
#define D 105
using namespace std;
int dis[N],get[D],cost[D][D],x[N],f[D],map[N][N],p,q;
int xx,z,y,n,m,K,e,d,i,j,num;
bool can[N][D],flag[N];
void SPFA()
{
  for (int i=1;i<=n;i++)
  {
    memset(dis,60,sizeof(dis));
    memset(flag,0,sizeof(flag));
    dis[1]=0;flag[1]=true;
    int h=0,t=1;x[1]=1;
    while (h<t)
    {
      int now=x[++h];
      for (int j=1;j<=m;j++)
        if (can[j][i]&&map[now][j]+dis[now]<dis[j])
        {
          dis[j]=dis[now]+map[now][j];
          if (!flag[j]) flag[j]=true,x[++t]=j;
        }
      flag[now]=false;
    }
    get[i]=dis[m];
  }
  memset(cost,60,sizeof(cost));
  for (int i=1;i<=n;i++)
  {
    int j=i;cost[i][j]=get[i];
    for (++j;j<=n;j++) 
      if (get[j]==get[i]) cost[i][j]=get[i]*(j-i+1);else break;
  }
}
int main()
{
  scanf("%d%d%d%d",&n,&m,&K,&e);
  memset(map,60,sizeof(map));
  for (i=1;i<=e;i++)
  {
    scanf("%d%d%d",&xx,&y,&z);
    map[xx][y]=map[y][xx]=z;
  }
  scanf("%d",&d);
  memset(can,1,sizeof(can));
  while (d)
  {
    d--;scanf("%d",&num,&p,&q);
    for (i=p;i<=q;i++) can[num][i]=false;
  }
  SPFA();
  memset(f,60,sizeof(f));f[0]=0;
  for (i=1;i<=n&&cost[1][i]<INF;i++) f[i]=cost[1][i];
  for (;i<=n;i++)
    for (j=0;j<i;j++)
      f[i]=min(f[i],f[j]+cost[j+1][i]+K);
  printf("%d",f[n]);
  return 0;
}

显然这样有点问题。在预处理cost的时候,有可能在第i天到第j天采用的并不是完全的最短路。于是我又改进了一下。

【AC代码】

#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 1010580540
#define N 25
#define D 105
using namespace std;
int dis[N],get[D],cost[D][D],x[N],f[D],map[N][N],sum[N][D],p,q;
int xx,z,y,n,m,K,e,d,i,j,num;
bool can[N][D],flag[N];
void SPFA()
{
  for (int i=1;i<=n;i++)
  for (int k=i;k<=n;k++)
  {
    memset(dis,60,sizeof(dis));
    memset(flag,0,sizeof(flag));
    dis[1]=0;flag[1]=true;
    int h=0,t=1;x[1]=1;
    while (h<t)
    {
      int now=x[++h];
      for (int j=1;j<=m;j++)
        if (sum[j][k]-sum[j][i-1]==0&&map[now][j]+dis[now]<dis[j])
        {
          dis[j]=dis[now]+map[now][j];
          if (!flag[j]) flag[j]=true,x[++t]=j;
        }
      flag[now]=false;
    }
    if (dis[m]<INF) cost[i][k]=dis[m]*(k-i+1);else cost[i][k]=INF;
  }
}
int main()
{
  scanf("%d%d%d%d",&n,&m,&K,&e);
  memset(map,60,sizeof(map));
  for (i=1;i<=e;i++)
  {
    scanf("%d%d%d",&xx,&y,&z);
    map[xx][y]=map[y][xx]=min(map[xx][y],z);
  }
  scanf("%d",&d);
  memset(can,0,sizeof(can));
  while (d)
  {
    d--;scanf("%d%d%d",&num,&p,&q);
    for (i=p;i<=q;i++) can[num][i]=1;
  }
  for (i=1;i<=m;i++)
    for (j=1;j<=n;j++)
      sum[i][j]=sum[i][j-1]+can[i][j];
  SPFA();
  memset(f,60,sizeof(f));f[0]=0;
  for (i=1;i<=n;i++)
    for (j=0;j<i;j++)
      f[i]=min(f[i],f[j]+cost[j+1][i]+K);
  printf("%d",f[n]-K);
  return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值