雨课堂学习心得

最近几天在学习雨课堂,为以后在的在线教学和翻转课堂做准备。通过这几天的学习对雨课堂等在线教学软件和翻转课堂等有一定的思考。

首先说一下我们现在上课存在的问题吧(即是背景)。由于我上的课是公共课,所以一般都是大班授课。那么在大班教学中,比较常见的问题就是由于学生人数多,老师比较难全面及时获得学生的反馈信息,老师对于学生的学习的好坏不知道,那么上课就只能凭老师的经验了。

而雨课堂的出现,改变了这种状态。雨课堂提供了新形式混合教学,便于教师准确了解学生学习效果。

首先说一说推送功能。老师可以用课堂推题的方式及时了解学生对讲授内容的掌握程度。这就使得老师掌握了大量来自于学生的反馈信息,而且这些信息是准确的。只要被推送的题目设计得当,完全可以作为某种程度的“课堂仪表”使用。而且学生也可以及时了解自己在全班同学中做题的速度和准确度。这样也便于学生及时调整自己的学习状态。此外,通过课外推送,可以让学生在课前发生一定程度的预习,在课后发生一定程度的复习。这二者的量都不大。这样做的好处,是使得认知速度不同的学生,通过复习/预习,在上课之前达到了接近或相同的水平。这样就会使得大多数学生与老师上课的进度有比较好的匹配。大多数学生课堂听课的受益会比较大。

接着说一说在线直播功能。在线直播功能强大,可以课件分享和师生互动。在直播过程中,直播课堂过程中支持多种形式的课件分享,如视频、音频、文字、桌面共享等,课件展示更加全面清晰。在直播同时,也支持师生互动。课堂上教师与学员可以进行文字、语音等形式实时互动,及时答疑。同时教师可以发起调查问卷,随堂作业任务,快速了解学员学习状态。当然雨课堂也支持回放,这都对课堂教学有了很大帮助。

当然,雨课堂还在学习,希望后面会有更多的体会。虽然雨课堂很强,但是也有个人建议,就是屏幕分享,这个功能对于理工科老师有很大的需求。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

### 大数据与机器习在雨课堂平台的应用 #### 数据收集与处理 大数据技术能够帮助雨课堂平台有效地管理和分析大量的教互动数据。通过集成多种数据源,如生签到记录、作业提交况以及在线测试成绩等,可以构建全面的生行为数据库[^1]。 #### 个性化推荐系统 利用机器习算法开发个性化的课程资源推荐引擎。基于历史浏览习惯和习成绩预测模型,向每位用户提供定制的习路径建议,从而提高参与度并改善教育成果。 #### 实时反馈机制 借助实时数据分析工具监控课堂教过程中的各项指标变化趋势,并及时给予教师有关调整授课策略的具体指导;同时也能让生即时获得自己表现评估报告,促进自我改进意识的发展。 #### 自动化评价体系 引入自然语言处理技术和图像识别功能来辅助完成对生作品的质量评判工作。这不仅减轻了人工批改的压力,而且提高了评分标准的一致性和公正性。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 假设有一个包含生成绩和其他特征的数据集df X = df.drop('grade', axis=1) y = df['grade'] # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 使用逻辑回归建立简单预测模型 model = LogisticRegression() model.fit(X_train, y_train) # 输出模型性能 print(f'Accuracy: {model.score(X_test, y_test)}') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值