Twitter SnowFlake算法

 

SnowFlake算法生成的ID值是一个64bit大小的整数,结构图如下
图片描述

  • 1位,不用。二进制中最高位为1的都是负数,但是我们生成的id一般都使用整数,所以这个最高位固定是0
  • 41位,用来记录时间戳(毫秒)。

    • 41位可以表示2^41-1个数字,
    • 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^41-1,减1是因为可表示的数值范围是从0开始算的,而不是1。
    • 也就是说41位可以表示2^41-1个毫秒的值,转化成单位年则是69年
  • 10位,用来记录工作机器id。

    • 可以部署在2^10=1024个节点,包括5位datacenterId5位workerId
    • 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId
  • 12位,序列号,用来记录同毫秒内产生的不同id。

    • 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

SnowFlake可以保证:

  • 所有生成的id按时间趋势递增
  • 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

以下是源码实现

public class IdWorker {


    private long workerId;
    private long datacenterId;
    private long sequence;


    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    // 起始时间戳,用于用当前时间戳减去这个时间戳,算出偏移量
    private long twepoch = 1288834974657L;

    // workerId占用的位数
    private long workerIdBits = 5L;
    // datacenterId占用的位数
    private long datacenterIdBits = 5L;
    // workerId可以使用的最大数值:31
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // datacenterId可以使用的最大数值:31
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 序列号占用的位数
    private long sequenceBits = 12L;

    // workerId左移位数:12
    private long workerIdShift = sequenceBits;
    // datacenterId左移位数:12+5=17
    private long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间戳左移位数:12+5+5=22
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    // sequence可以使用的最大数值:4095
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    // 上一次生成ID的时间戳
    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        // 拿到当前时间戳(毫秒)
        long timestamp = timeGen();

        // 当前时间戳比上次生成ID时间戳还小,时间回拨了,直接抛出异常,否则可能生成重复ID
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }

        // 序列号只有在同一毫秒内生成ID,才会去递增,否则为0
        // 如果上次生成ID和当前时间戳一致,表示同一毫秒内生成ID,则使用序列号+1,否则序列号为0
        if (lastTimestamp == timestamp) {

            // sequenceMask是为了防止溢出:始终保证sequence范围为0~4095
            // sequenceMask值4095,二进制表示为00001111 11111111
            // 当sequence达到4095时,sequence变为0,(4095+1)& 4095转为二进制00010000 00000000 & 00001111 11111111
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 如果同一毫秒内,序列号已到达最大值,则调整当前时间戳直到大于上一次生成ID的时间戳:while循环实现
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        // 当前生成ID赋值给lastTimestamp,记录最近生成ID时间戳
        lastTimestamp = timestamp;

        // 位移后返回结果值
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

1.位运算n个bit能表示的最大值
long maxWorkerId = -1L ^ (-1L << 5L)的二进制运算过程如下:

  // -1左移5,得到结果a:

        11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
  11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位补0
        11111111 11111111 11111111 11100000 //结果a


  // -1异或a:

        11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
    ^   11111111 11111111 11111111 11100000 //两个操作数的位中,相同则为0,不同则为1
---------------------------------------------------------------------------
        00000000 00000000 00000000 00011111 //最终结果31

2.用mask防止溢出

 long seqMask = -1L ^ (-1L << 12L); // 计算12位能耐存储的最大正整数,相当于:2^12-1 = 4095
 System.out.println("seqMask: "+seqMask);
 for(long i=1L; i<Integer.MAX_VALUE; i++){
     System.out.println(i & seqMask);
 }

 // 结果值范围始终是 0-4095 !

3.测试结果

    public static void main(String[] args) throws InterruptedException {
        IdWorker worker = new IdWorker(1, 1, 0);
        ConcurrentSkipListSet<Long> set = new ConcurrentSkipListSet<>();

        ExecutorService executor = Executors.newFixedThreadPool(10);
        for (int i = 0; i < 100; i++) {
            executor.submit(new Runnable() {
                @Override
                public void run() {
                    for (int j = 0; j < 100; j++) {
                        Long id = worker.nextId();
                        if (!set.add(id)) {
                            System.out.println(id);
                        }
                    }
                }
            });
        }
        Thread.sleep(1000); // 保证全部ID生成
        System.out.println();
        System.out.printf("ID COUNT:%d", set.size());
    }

参考:https://segmentfault.com/a/1190000011282426

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值