Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)跟3sum很类似。 需枚举前俩个!
vector<vector<int> > fourSum(vector<int> &num, int target)
{
if(num.size() < 4) return vector<vector<int> >();
vector<vector<int> > res;
sort(num.begin(),num.end());
for (int k = 0;k <= num.size()-4;k++)//先枚举前俩个,最后俩个求和
{
if(k > 0 && num[k] == num[k-1])continue;
for(int i = k+1;i <= num.size()-3;i++)
{
if(i > k+1 && num[i] == num[i-1])continue;
int my_target = target - num[k] - num[i];
int left = i+1;
int right = num.size()-1;
while(left < right)
{
if(my_target == num[left] + num[right])
{
vector<int> res_one;
res_one.push_back(num[k]);
res_one.push_back(num[i]);
res_one.push_back(num[left]);
res_one.push_back(num[right]);
res.push_back(res_one);
while(left < right && num[left] == num[left-1])//防止 000 222 求2的情况
left++;
right--;
while(left < right && num[right] == num[right+1])
right--;
}
else if (my_target < num[left] + num[right])
{
right-- ;
}
else
{
left++;
}
}
}
}
return res;
}