动态规划 :POJ 1191 棋盘分割

题目的要求是均方差最小,按照均方差的公式,可以转化为最后分割的每个矩形的平方和最小。设f(k, x1, y1, x2, y2)左上角为x1,y1,右下角为x2,y2的矩形在切割k次之后每一块的平方和。s[x1][y1][x2][y2]左上角为x1,y1,右下角为x2,y2的矩形的平方和。
由此可以写出状态转移方程:
f(k, x1, y1, x2, y2) = min{ min(f(k-1, x1, y1, a, y2)+s[a+1][y1][x2][y2],  f(k-1, a, y1, x2, y2)+s[x1][y1][a][y2]) (x1<=a<x2) (横切),  min(f(k-1, x1, y1, x2, b)+s[x1][b+1][x2][y2],  f(k-1, x1, b+1, x2, y2)+s[x1][y1][x2][b]) (y1<=b<y2) (纵切)}
初始状态为:f(0, 0, 0, 7, 7) = 整块棋盘的平方和。(参考《算法艺术与信息学竞赛》P116)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值