题目:输入一个正数n,输出所有和为n连续正数序列。例如输入15,由于1+2+3+4+5=4+5+6=7+8=15,所以输出3个连续序列1-5、4-6和7-8。
解法一:开辟一个大小为n/2 + 1(n为奇数,n为偶数则大小为n/2 - 1)的数组,值从1到n。两个指针p1指向1,p2指向p1的下一个。然后循环,如果p1和p2之间的元素和小于n,p2++;大于n,p1++;等于n,则输出之后p1,p2同时后移。直到p2走完数组,循环结束。这种方法时间复杂度为O(n),空间复杂度为O(n)。
解法二:常规解法,复杂度为O(n^2)。