BZOJ 3754 Tree之最小方差树 MST

题目大意:求一个图的最小标准差生成树。


思路:毫无思路,之后看了题解。居然是一个很厉害的暴力。

一个很关键的地方:枚举平均值,然后根据(a - ave(a))^2将边排序,做最小生成树。所有的标准差最小值就是答案。

但是这是为什么?如果当前枚举的ave(a)并不是选取的边的平均值怎么办?

那么就一定有一个你会枚举到的ave(a)计算之后的标准差要比现在小。

这样基本就可以说明这个做法的正确性了。但是需要枚举的范围很大,虽然c只有100,但是按照多大枚举呢。很显然是按照EPS = 1.0 / (m - 1)枚举,因为平均值一定在这其中产生。还有一个小剪枝就是将原图做一次最小生成树和最大生成树,确定枚举的上界和下界。

(为什么我的代码跑了10s+555~~~


CODE:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define MAX 2010
#define INF 0x3f3f3f3f
#define EPS (1.0 / (points - 1))
using namespace std;

struct Edge{
	int x,y,len;
	double temp;
	
	bool operator <(const Edge &a)const {
		return len < a.len;
	}
	void Read() {
		scanf("%d%d%d",&x,&y,&len);
	}
}edge[MAX];

int points,edges;
int father[MAX];

int Find(int x)
{
	if(father[x] == x)	return x;
	return father[x] = Find(father[x]);
}

inline int MST()
{
	for(int i = 1; i <= points; ++i)
		father[i] = i;
	int re = 0;
	for(int i = 1; i <= edges; ++i) {
		int fx = Find(edge[i].x);
		int fy = Find(edge[i].y);
		if(fx != fy) {
			father[fx] = fy;
			re += edge[i].len;
		}
	}
	return re;
}

bool cmp(const Edge &a,const Edge &b)
{
	return a.temp < b.temp;
}

inline double Calc(double average)
{
	for(int i = 1; i <= points; ++i)
		father[i] = i;
	for(int i = 1; i <= edges; ++i)
		edge[i].temp = (average - edge[i].len) * (average - edge[i].len);
	sort(edge + 1,edge + edges + 1,cmp);
	double re = .0;
	for(int i = 1; i <= edges; ++i) {
		int fx = Find(edge[i].x);
		int fy = Find(edge[i].y);
		if(fx != fy) {
			father[fx] = fy;
			re += edge[i].temp;
		}
	}
	return sqrt(re / (points - 1));
}

int main()
{
	cin >> points >> edges;
	for(int i = 1; i <= edges; ++i)
		edge[i].Read();
	sort(edge + 1,edge + edges + 1);
	double range_min = (double)MST() / (points - 1);
	reverse(edge + 1,edge + edges + 1);
	double range_max = (double)MST() / (points - 1);
	double ans = INF;
	for(int i = 0; EPS * i + range_min <= range_max; ++i)
		ans = min(ans,Calc(EPS * i + range_min));
	cout << fixed << setprecision(4) << ans << endl;
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值