最大公约数和最小公倍数问题 WIKIOI 1012
题目描述 Discription
输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数
条件: 1.P,Q是正整数
2.要求P,Q以x0为最大公约数,以y0为最小公倍数.
试求:满足条件的所有可能的两个正整数的个数.
输入描述 Input Discription
二个正整数x0,y0
输出描述 Output Discription
满足条件的所有可能的两个正整数的个数
样例输入 Sample Input
3 60
样例输出 Sample Output
4
这一题可以从 x 到 y 一个一个去枚举a和b,O(N*N)的,我估计要超时所以就没写这种
我们看看 x 和 y 的性质,我们设要求得两个数位 a 和 b
x = g c d ( a , b )
y = l c m ( a , b )
然而 a * b = g c d ( a , b ) * l c m ( a , b ) = x * y
那么,就可以得到 a = x * y / b ,为了避免超 int ,所以写成 b = x / a * y 或者 b = y / a * x
这样我们就只需要从 x 到 y 枚举a,然后算出 b 即可
WIKIOI测评:
C++ AC Code
#include<cstdio>
int gcd(int a,int b){return (b)?gcd(b,a%b):a;}
inline int lcm(int a,int b){ return a/gcd(a,b)*b; }
int main()
{
int x,y;
scanf("%d%d",&x,&y);
int res=0;
int a,b;
for(a=x;a<=y;a++)
if(y%a==0)
{
b=y/a*x;
if(gcd(a,b)==x&&lcm(a,b)==y) res++;
}
printf("%d\n",res);
return 0;
}