【左偏树+贪心】[Apio2012]dispatching

 [Apio2012]dispatching

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 561   Solved: 291
[ Submit][ Status][ Discuss]

Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。


 

1 ≤N ≤ 100,000忍者的个数;
1 ≤M ≤ 1,000,000,000 薪水总预算; 
 
0 ≤B i < i 忍者的上级的编号;
1  ≤Ci ≤ M                   忍者的薪水;
1  ≤Li ≤ 1,000,000,000           忍者的领导力水平。
 
 

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预 算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 B i , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0 并且每一个忍者的老板的编号一定小于自己的编号B i < i


 

Output

输出一个数,表示在预算内顾客的满意度的最大值。
 
 

Sample Input


5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output

6

HINT

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算 4。

因为派遣了2个忍者并且管理者的领导力为3,用户的满意度为 2,是可以得到的用户满意度的最大值。







(引用 http://txhwind.blog.163.com/blog/static/203524179201242021458422/ )

显然应该在子树中按薪水从小到大贪心选择,所以这道题的主要问题是维护某颗子树中薪水的序,并且要支持合并。
维护一颗以薪水为关键字的大根的左偏树。合并所有子树和自己后,如果左偏树中所有点的薪水和大于m,那么就删除根。最后更新答案。
(引用结束)



应该算是左偏树的模板题,哎呀,昏了,不来了。。。。。


测评情况(POJ)


看似一次,其实在本机WA哭了。。。。。


还有,这个程序如果用windows测会暴栈的,linux下无压力AC



C++ AC Code

/*http://blog.csdn.net/jiangzh7
By Jiangzh*/
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=100000+10;
typedef long long LL;

int n;
LL m;
int cost[N],lead[N];
struct link{int y;link *next;}*head[N];
int A[N],L[N],R[N],D[N],cnt[N];
LL sum[N];
LL ans;

void inlink(int x,int y)
{
	link *node=new link;
	node->y=y;
	node->next=head[x];
	head[x]=node;
}

int merge(int x,int y)
{
	if(!x||!y) return x|y;
	if(A[x]<A[y]) swap(x,y);
	R[x]=merge(R[x],y);
	if(D[R[x]]>D[L[x]]) swap(L[x],R[x]);
	cnt[x]=cnt[L[x]]+cnt[R[x]]+1;
	sum[x]=sum[L[x]]+sum[R[x]]+cost[x];
	D[x]=D[R[x]]+1;
	return x;
}

int del(int x)
{
	int t=merge(L[x],R[x]);
	L[x]=R[x]=D[x]=0;
	return t;
}

int work(int x)
{
	int t=x;
	A[x]=sum[x]=cost[x]; cnt[x]=1;
	for(link *node=head[x];node;node=node->next)
		t=merge(t,work(node->y));
	while(sum[t]>m) t=del(t);
	ans=max(ans,(LL)lead[x]*cnt[t]);
	return t;
}

int main()
{
	freopen("dispatching.in","r",stdin);
	freopen("dispatching.out","w",stdout);
	scanf("%d%lld",&n,&m);
	for(int i=1;i<=n;i++)
	{
		int leader;
		scanf("%d%d%d",&leader,&cost[i],&lead[i]);
		inlink(leader,i);
	}
	work(1);
	printf("%lld\n",ans);
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值