1.问题
平面内有n(n>1)个不重复的点,求最近的两个点间的距离。
2.解析
解决这个问题有两种方法:
1.当n<=3时,直接暴力枚举,时间复杂度为O(n)。
2.当n>3时,可以采用分治的方法将一个大的就近对问题分解为两个小的就近对问题,再将问题的结果合并,求出最后的解。
将这些所有的点按x坐标升序排序后从中间分成两个n/2的集合后求最近对,假设结果分别为d1,d2,那么大集合的最近对就是d=min(d1,d2)。
很明显这样有一个漏洞,如果最近对的两个点分别在左右两个小集合中呢?
这时候将要把中点左右d范围内的点再求一次最小对,这样的做出来的结果再和d取最小值就是最后的答案了。
3.设计
4.分析
5.源代码
#include<bits/stdc++.h>
using namespace std;
const double inf = 1e20;
const int maxn = 100005;
struct Point{
double x, y;
}point[maxn];
int n, mp[maxn];
bool cmpx(const Point& a, const Point& b){//按x坐标排序
if (a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
bool cmpy(const int& a, const int& b){//按y坐标排序
return point[a].y < point[b].y;
}
double dis(int i, int j){//求两点之间的距离
return sqrt((point[i].x - point[j].x)*(point[i].x - point[j].x) + (point[i].y - point[j].y)*(point[i].y - point[j].y));
}
double Closest_Pair(int left, int right){
double d = inf;
if (left == right)
return d;
if (left + 1 == right)
return dis(left, right);
int mid = (left + right) >> 1;
double d1 = Closest_Pair(left, mid);
double d2 = Closest_Pair(mid + 1, right);
d = min(d1, d2);
int i, j, k = 0;
//分离出宽度为d的区间
for (i = left; i <= right; i++){
if (fabs(point[mid].x - point[i].x) <= d)
mp[k++] = i;
}
sort(mp, mp+k, cmpy);
//线性扫描,求得最终结果
for (i = 0; i < k; i++){
for (j = i + 1; j < k && point[mp[j]].y - point[mp[i]].y<d; j++){
double d3 = dis(mp[i], mp[j]);
if (d > d3) d = d3;
}
}
return d;
}
int main(){
while (~scanf("%d", &n) && n){
for (int i = 0; i < n; i++)
scanf("%lf %lf", &point[i].x, &point[i].y);
sort(point, point + n, cmpx);
printf("%.2lf\n", Closest_Pair(0, n - 1) / 2);
}
return 0;
}