#利用fit()函数
#首先,创建输入(dataloader)
#然后,创建模型(model)
#最后,创建损失函数
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torchvision
from torchvision import datasets,transforms
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
#将所有变换都以列表形式放在Compose里面
transformation = transforms.Compose([
#将读取的图片或者其他类型的数据转换成Tensor
#将Tensor转换到0到1之间
#会将channel放在第一维度上
transforms.ToTensor(),
])
train_ds=datasets.MNIST(
#将数据集下载到该文件夹
'D:/pycharmworkspace/ISLR-master',
#是否是训练数据 是
train=True,
#是否要做变化 做变化
transform=transformation,
#是否下载 是
download=True
)
test_ds=datasets.MNIST(
#将数据集下载到该文件夹
'D:/pycharmworkspace/ISLR-master',
#是否是训练数据 否 则是测试数据
train=False,
#是否要做变化 做变化
transform=transformation,
#是否下载 是
downlo
基于pytorch的MNIST数据集分类
最新推荐文章于 2023-10-22 20:18:34 发布
本文介绍如何使用PyTorch框架对MNIST数据集进行处理和训练,详细讲解了网络模型的设计、数据预处理、训练过程以及模型评估,帮助读者掌握深度学习在图像分类中的应用。
摘要由CSDN通过智能技术生成