基于pytorch的MNIST数据集分类

本文介绍如何使用PyTorch框架对MNIST数据集进行处理和训练,详细讲解了网络模型的设计、数据预处理、训练过程以及模型评估,帮助读者掌握深度学习在图像分类中的应用。
摘要由CSDN通过智能技术生成
#利用fit()函数
#首先,创建输入(dataloader)
#然后,创建模型(model)
#最后,创建损失函数
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torchvision
from torchvision import datasets,transforms
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split

#将所有变换都以列表形式放在Compose里面
transformation = transforms.Compose([
    #将读取的图片或者其他类型的数据转换成Tensor
    #将Tensor转换到0到1之间
    #会将channel放在第一维度上
    transforms.ToTensor(),
])

train_ds=datasets.MNIST(
    #将数据集下载到该文件夹
    'D:/pycharmworkspace/ISLR-master',
    #是否是训练数据 是
    train=True,
    #是否要做变化 做变化
    transform=transformation,
    #是否下载 是
    download=True
)

test_ds=datasets.MNIST(
    #将数据集下载到该文件夹
    'D:/pycharmworkspace/ISLR-master',
    #是否是训练数据 否 则是测试数据
    train=False,
    #是否要做变化 做变化
    transform=transformation,
    #是否下载 是
    downlo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值