- 博客(6)
- 收藏
- 关注
原创 深度学习与图像处理精要图解
在计算机视觉领域,深度学习方法与传统图像处理技术的融合正在持续推动技术边界。近年来,卷积神经网络(CNN)、残差网络(ResNet)和生成对抗网络(GAN)等模型通过多层次特征提取与端到端优化,显著提升了图像识别与生成的性能;而边缘检测、特征描述子等经典算法仍为模型优化与可解释性研究提供重要支撑。:剖析CNN的局部感知机制、ResNet的恒等映射设计以及GAN的对抗训练动力学:探讨数据增强策略与Sobel/Canny算子在特征工程中的协同作用:从随机梯度下降的收敛性到F1-score的多维度性能度量。
2025-07-16 22:32:55
930
原创 PyTorch 与深度学习 3 从张量开始
本篇文章将介绍上文所提到的“张量”在“”这篇文章中,我们一开始没有明确介绍张量这个概念,只是说“把它想象成一个浮点数的向量或矩阵”,但是在下文中,我们将详细介绍张量以及如何使用张量来处理PyTorch中的所有浮点数。同样,我们将在下一篇文章中介绍图像像素到数字的转换,以及许多其他类型的数据。
2025-02-20 13:24:05
743
原创 PyTorch 与深度学习 2 预训练网络 以及 模型描述
在本章中,我们将探讨3种常用的预训练模型:一种可以根据内容对图像进行标记的模型,一 种可以从真实图像中生成新图像的模型,还有一种可以使用正确的英语句子来描述图像内容的模 型。我们将学习在PyTorch中加载和运行这些预先训练好的模型。
2025-01-22 20:15:07
796
原创 PyTorch 深度学习 1.为什么要用PyTorch 以及 深度学习的概念
这里我们将讲解两个人对于深度学习的定义,一位是,他对于深度学习概念的定义较早一些;另一位是Tom Mitchell ,他对深度学习概念的定义更加丰富一些。监督学习是利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。给算法一个数据集,其中包含正确答案。举例说明:假定我们有一组数据是有关樱桃大小以及颜色对应的甜度(设置为 1 和 0 ,香甜为 1 ,不甜为 0 )。
2025-01-15 19:35:52
1233
原创 哈夫曼树结点排列 直观展示
本文将讲解哈夫曼树的结点排列,并将以动态图形式直观展示。哈夫曼树(Huffman Tree),也称为最优二叉树,是一种带权路径长度最短的二叉树,常用于数据压缩中的编码算法。在构建哈夫曼树时,结点的排列遵循特定规则以确保生成的树具有最小的带权路径长度。
2024-12-25 22:13:21
316
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅