【深度学习】Python实现A*算法全流程(全源码)

目录

A*算法的起源与基本原理

A*算法的机制   

A*算法中的启发式函数

A*算法的应用

使用A*算法进行路径搜索 

步骤1:导入库

步骤2:定义启发式函数

步骤3:实现A*算法

步骤4:定义路径重建函数

 步骤5:设置图并进行可视化

A*寻路问题源码

A*算法的优点

局限性与注意事项


  

      A*(A星)算法是计算机科学中一种高效的通用搜索算法,专门用于寻找图中节点间的最优路径。这一算法应用广泛,从视频游戏的路径规划到网络路由和人工智能领域,始终是算法与人工智能研究的核心技术之一。

A*算法的起源与基本原理

        1968年,彼得·哈特(Peter Hart)、尼尔斯·尼尔森(Nils Nilsson)和伯特伦·拉斐尔(Bertram Raphael)共同开发了A算法。作为迪杰斯特拉(Dijkstra)算法的扩展与改进版本,A算法同样用于寻找图中节点间的最短路径。不同于迪杰斯特拉算法均匀探索所有可能路径的做法,A*算法通过引入启发式方法来预估节点到目标的成本,从而显著优化了搜索效率,降低了计算复杂度。

A*算法的机制   

        A*算法的核心在于代价函数与启发式函数的结合运用。它通过以下两个关键参数实现:

  1. g(n):从起点到节点n的实际路径代价
  2. h(n):从节点n到目标的启发式估计代价(体现算法对额外信息的利用)

        总代价函数f(n)=g(n)+h(n)表示通过节点n的最佳路径估计代价。算法采用优先级队列(开放集)管理搜索路径,主要流程如下:

  1. 初始化:将起始节点及其f值加入开放集
  2. 主循环
    • 取出开放集中f值最小的节点
    • 若为目标节点,则终止并返回路径
    • 否则扩展该节点,计算所有邻居节点的g、h、f值
    • 若发现更优路径或新节点,则将邻居加入开放集
  3. 终止条件:找到目标节点或开放集为空(表示无解)

A*算法中的启发式函数

        A*算法的性能高度依赖于所采用的启发式函数。合适的启发式选择将显著提升算法效率和搜索速度,引导算法在更少节点探索的情况下找到最优路径。关键启发式特性包括:

  • 可采纳性:当启发式始终不高于实际到达目标的代价时,该启发式是可采纳的。典型示例包括空间导航中的直线距离估计。
  • 一致性(单调性):若当前节点到目标节点的估计代价始终不超过相邻节点的估计代价加上转移代价,则该启发式具有一致性。
  • 实际应用中常采用以下启发式方法:基于网格环境的曼哈顿距离(适用于游戏开发和城市路径规划),以及用于精确距离测算的欧几里得距离。

A*算法的应用

        A*算法的启发式搜索能力使其能高效寻找最优路径,因此在多个领域都有广泛应用:

  • 游戏与机器人导航:在游戏开发中,A*算法用于动态环境下的角色路径规划;机器人领域则利用它实现精准的点对点导航。
  • 网络通信:电信行业运用A*算法计算数据包传输的最优路由路径,提高网络传输效率。
  • 人工智能决策:A*算法支持AI系统的多阶段决策评估,在规划和决策算法中发挥着重要作用。

使用A*算法进行路径搜索 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值