机器学习中样本比例不平衡的处理方法

1、样本不平衡往往会导致模型对样本数较多的分类造成过拟合,即总是将样本分到了样本数较多的分类中;除此之外,一个典型的问题就是 Accuracy Paradox,这个问题指的是模型的对样本预测的准确率很高,但是模型的泛化能力差

2、针对样本的不平衡问题,有以下几种常见的解决思路

搜集更多的数据

       搜集更多的数据,从而让正负样本的比例平衡,这种方法往往是最被忽视的方法,然而实际上,当搜集数据的代价不大时,这种方法是最有效的。但是当搜集数据的场景本来产生数据的比例就是不平衡时,这种方法并不能解决数据比例不平衡问题。

改变评判指标

       改变评判指标,也就是不用准确率来评判和选择模型,原因就是我们上面提到的 Accuracy Paradox 问题。实际上有一些评判指标就是专门解决样本不平衡时的评判问题的,如准确率,召回率,F1值,ROC(AUC),Kappa 等。ROC 曲线具有不随样本比例而改变的良好性质,因此能够在样本比例不平衡的情况下较好地反映出分类器的优劣。

对数据进行采样

       对数据采样可以有针对性地改变数据中样本的比例,采样一般有两种方式:over-sampling和 under-sampling,前者是增加样本数较少的样本,其方式是直接复制原来的样本,而后者是减少样本数较多的样本,其方式是丢弃这些多余的样本。通常来说,当总样本数目较多的时候考虑 under-sampling,而样本数数目较少的时候考虑 over-sampling

合成样本

       合成样本(Synthetic Samples)是为了增加样本数目较少的那一类的样本,合成指的是通过组合已有的样本的各个 feature 从而产生新的样本。一种最简单的方法就是从各个 feature 中随机选出一个已有值,然后拼接成一个新的样本,这种方法增加了样本数目较少的类别的样本数,作用与上面提到的 over-sampling方法一样,不同点在于上面的方法是单纯的复制样本,而这里则是拼接得到新的样本。这类方法中的具有代表性的方法是 SMOTE(Synthetic Minority Over-sampling Technique),这个方法通过在相似样本中进行 feature 的随机选择并拼接出新的样本。

改变样本权重

       改变样本权重指的是增大样本数较少类别的样本的权重,当这样的样本被误分时,其损失值要乘上相应的权重,从而让分类器更加关注这一类数目较少的样本。

参考:https://mp.weixin.qq.com/s/5csfnBWZ2MQsnWZnNj9b8w

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值