- 博客(67)
- 收藏
- 关注
原创 408《数据结构》——第二章:线性表
线性表(Linear List)是具有相同数据类型的n (n ≥ 0)个数据元素的有限序列。。关键特性:元素个数有限。所有元素属于同一数据对象。元素之间存在严格的顺序关系。存在唯一的“第一个”元素(表头元素,无直接前驱)。存在唯一的“最后一个”元素(表尾元素,无直接后继)。除表头和表尾元素外,每个元素aᵢ(1 < i < n) 都有且仅有一个直接前驱aᵢ₋₁和一个直接后继aᵢ₊₁。一对一的线性关系。是线性结构的典型代表。基本操作(ADT定义的核心):构造一个空的线性表L。
2025-06-01 23:35:17
1060
原创 大模型(7)——向量模型(向量化存储)
定义对比学习模型self.head = torch.nn.Linear(768, 256) # 降维embeddings = self.head(outputs.last_hidden_state[:, 0]) # 取[CLS]向量# 训练代码略(需准备正负样本对)
2025-05-27 22:48:22
878
原创 大模型(6)——语义分割
(Semantic Segmentation)的结合,正在计算机视觉领域发挥越来越重要的作用。语义分割的核心是为图像或视频中的每个像素分配语义类别标签(如“人”“车”“天空”),而大模型的引入显著提升了分割的精度、泛化能力和应用场景。,使其从纯视觉任务升级为感知-推理-决策闭环中的智能组件。未来随着多模态大模型的演进,语义分割将进一步融入通用人工智能(AGI)系统。大模型(如多模态大语言模型、视觉大模型等)与。大模型为语义分割带来了。
2025-05-27 22:42:48
652
原创 大模型(5)——编码器(Encoder)、解码器(Decoder)
编码器是“理解者”,擅长从数据中提取抽象特征;解码器是“生成者”,擅长基于上下文创造新内容;两者协作可处理复杂任务(如翻译、对话),而独立设计则针对特定场景优化(如GPT纯生成、BERT纯理解)。现代大模型(如LLaMA、PaLM)常采用解码器-only架构,因其生成能力更适配通用任务,而编码器-解码器架构在需精确对齐输入输出的场景(如翻译)中仍不可替代。
2025-05-27 22:35:43
1070
原创 大模型(4)——Agent(基于大型语言模型的智能代理)
大模型Agent是一种基于大型语言模型(LLM)的智能系统,能够自主感知环境、规划任务、调用工具并完成复杂目标。其核心原理是,实现从“思考”到“行动”的闭环。
2025-05-27 22:30:14
806
原创 大模型——多模态检索的RAG系统架构设计
该架构通过预训练对齐或投影层学习实现跨模态向量统一,结合混合检索策略,使RAG系统能同时处理文本和图像查询,生成更丰富的多模态回答。
2025-05-20 23:10:55
702
原创 大模型(3)——RAG(Retrieval-Augmented Generation,检索增强生成)
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索与文本生成的技术,旨在通过引入外部知识库提升生成内容的准确性和相关性。其核心机制是先检索相关信息,再基于检索结果生成答案。相比传统生成模型,RAG具有更准确、知识可更新、透明可信等优势。RAG的核心组成包括检索器和生成器,工作流程分为检索阶段和生成阶段。训练方式可以是联合训练或分阶段训练。RAG的优势在于准确性、可解释性和动态更新,但也存在检索效率、依赖检索质量和上下文长度限制等局限。应用场景包括开放域问答
2025-05-20 23:03:01
764
原创 大模型(2)——提示工程(Prompt Engineering)
提示工程是释放大模型潜力的关键技能,核心在于清晰定义任务+结构化引导模型思考。迭代优化:通过测试不同提示版本对比效果。领域适配:医疗、法律等专业领域需结合术语和规范。伦理审查:避免生成有害或偏见内容(如添加过滤条件)。通过持续实践,可显著提升模型输出质量,减少“AI幻觉”风险,使其真正成为高效的生产力工具。
2025-05-19 23:06:30
1091
原创 大模型(1)——基本概念
定义大模型(Large Models)是指参数量极大(通常在十亿级(Billion)到万亿级(Trillion))的深度学习模型,通过海量数据和复杂架构训练,具备强大的泛化能力和多任务处理能力。大规模参数:模型参数量远超传统模型(如GPT-3有1750亿参数,PaLM达5400亿)。通用性:通过预训练学习通用知识,可适配多种下游任务(如文本生成、图像识别、代码编写)。自监督学习:依赖无标注数据(如互联网文本、图像)进行训练,无需人工标注。关键概念预训练与微调。
2025-05-19 22:36:04
687
原创 机器学习(14)——模型调参
通过以上策略和代码示例,可以在千万级数据集上高效完成模型调参。实际应用中建议结合业务特点调整参数范围,并通过自动化流水线实现持续优化。
2025-05-19 22:16:31
1265
原创 机器学习(13)——LGBM(2)
LightGBM是一种高效的梯度提升树算法,由微软开发,旨在解决传统梯度提升树在处理大规模数据时的性能瓶颈。其核心特点包括高效性、低内存使用和高精度。LightGBM通过基于直方图的算法优化,将连续特征离散化为直方图,减少计算量,并支持多线程和GPU加速,显著提升训练速度。此外,它继承了梯度提升树的高精度特性,支持分类、回归任务,并提供特征重要性评估和早停机制等功能。LightGBM广泛应用于电商、金融、医疗和工业等领域,尤其适合处理大规模数据。其优点在于训练速度快、内存占用低,但可能对参数设置较为敏感。
2025-05-18 21:00:23
1128
原创 机器学习(12)——LGBM(1)
LightGBM因其高效性和优秀的性能,已成为许多机器学习竞赛和工业界应用的首选工具之一。高维特征通常是稀疏的,许多特征互斥(不会同时取非零值)。EFB将这些特征捆绑在一起,将复杂度从O(#features)降到O(#bundle),同时不影响准确性。LightGBM(Light Gradient Boosting Machine)是微软开发的一个基于决策树算法的分布式梯度提升框架,专为高效性和可扩展性设计。LightGBM属于梯度提升决策树(GBDT)家族,是XGBoost之后的一个重要改进。
2025-05-18 20:57:06
1197
原创 机器学习(11)——xgboost
XGBoost是一种高效的梯度提升决策树(GBDT)实现,广泛应用于机器学习和数据科学领域。它通过组合多个弱学习器(如决策树)来构建强学习器,具有以下核心特点:1)使用二阶导数优化,提升模型精度;2)引入正则化项,防止过拟合;3)支持并行计算,提高训练效率;4)采用后剪枝和稀疏感知算法,增强模型灵活性。XGBoost还通过列块存储、缓存优化和外存计算等技术,进一步优化了大规模数据处理能力。与LightGBM相比,XGBoost在树生长策略、特征处理和内存使用等方面有所不同,适用于不同场景。实践建议包括参数调
2025-05-18 17:06:01
1121
原创 机器学习(10)——神经网络
神经网络(Neural Networks,简称NN)是一类模仿生物神经系统的数学模型,用于处理和解决各种类型的任务,如分类、回归、模式识别等。神经网络属于机器学习领域的一个重要分支,特别是在深度学习(Deep Learning)中起到了核心作用。神经网络通过层次化非线性变换实现强大的函数拟合能力,其成功依赖于:架构设计(如CNN处理图像、Transformer处理文本)。优化技术(如Adam、Dropout)。大规模数据与算力支撑(GPU/TPU)。
2025-04-26 16:20:45
1675
原创 机器学习(9)——随机森林
它通过构建多个决策树(Decision Tree),并通过集成学习的思想,最终输出多个决策树的结果的平均值或多数投票结果,从而提高模型的准确性和稳定性。随机森林的核心思想是通过构建多个决策树,并结合它们的结果来进行预测。决策树继续生长,直到满足一定条件(例如,树的深度达到预设的最大值,或者节点的样本数小于某个阈值)为止。随机选择特征:在每个决策树的每个节点,选择一个随机的特征子集来进行分裂,而不是使用所有特征。在每个节点的划分时,随机选择一个特征子集,而不是使用所有特征,从而减少不同决策树之间的相关性。
2025-04-25 00:05:29
1262
原创 机器学习(8)——主成分分析
主成分分析(PCA,Principal Component Analysis)是一种常用的降维技术,旨在通过线性变换将数据转换到一个新的坐标系中,使得数据的方差最大化,从而提取出数据中的主要特征。它在数据预处理、降维、噪声去除和数据可视化等领域有广泛应用。PCA通过正交变换提取数据主要变化方向,是降维和特征提取的基石。理解其数学本质(特征分解)和局限性(线性假设)有助于在实际任务中合理应用。进阶方法(如核PCA)可解决非线性问题。
2025-04-24 23:09:16
909
原创 机器学习(7)——K均值聚类
K均值是聚类任务的基础算法,核心在于迭代优化质心位置。尽管有局限性(如需预设K值),但其高效性和易实现性使其在实践中广泛应用。改进方法(如K-Means++)和评估技巧(肘部法则)可进一步提升效果。
2025-04-24 22:22:30
1355
1
原创 机器学习(6)——朴素贝叶斯
朴素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的概率分类算法,在机器学习和数据挖掘中广泛应用。它被称为“朴素”的原因是它假设特征之间是条件独立的,这简化了模型的复杂度,使得它在许多实际问题中能够表现得相当高效,尤其适用于文本分类、垃圾邮件识别等任务。朴素贝叶斯是一种简单但强大的概率分类器,尤其适合高维稀疏数据和实时预测场景。尽管其独立性假设在实际中可能不成立,但在许多任务(如文本分类)中仍表现优异。理解其数学基础(贝叶斯定理)和变种(高斯/多项式/伯努利)是灵活应用的关键。
2025-04-16 00:41:44
934
原创 机器学习(5)——支持向量机
SVM 核心:最大化间隔的超平面,支持核方法处理非线性。关键参数:正则化参数CCC。核函数类型(RBF/线性/多项式)。RBF 核的γγγ。适用场景:中小规模高维数据(如文本分类、图像识别)。需强泛化能力的分类任务。
2025-04-14 00:03:29
1422
原创 机器学习(4)—— K近邻算法
给定一个待分类(或回归)的数据点,找到训练集中距离该数据点最近的K个邻居,然后通过这些邻居的标签(分类问题)或数值(回归问题)来预测该数据点的标签或数值。:待预测样本的类别由其K个最近邻居的**多数投票(Majority Voting)**决定。”,通过计算待预测样本与训练样本的距离,找到最近的K个邻居,基于这些邻居的标签进行预测。计算待分类点与所有训练集点之间的距离,常用的距离度量包括欧几里得距离、曼哈顿距离等。:计算样本间距离的方法(如欧氏距离、曼哈顿距离)。:选择最近的K个邻居(影响模型复杂度)。
2025-04-12 17:58:28
909
原创 机器学习(3)——决策树
决策树(Decision Tree)是一种非参数的监督学习算法,适用于分类和回归任务。其核心思想是通过一系列规则(if-then结构)对数据进行递归划分,最终形成一棵树形结构,实现预测或分类。
2025-04-12 17:57:48
1224
原创 机器学习(2)——逻辑回归
逻辑回归(Logistic Regression)是一种用于分类问题的统计方法,特别是用于二分类问题。尽管其名字中有“回归”二字,但逻辑回归实际上是一种分类模型。它通过一个线性模型来预测一个事件的发生概率,输出值在0到1之间。
2025-04-12 17:57:07
930
原创 机器学习(1)—线性回归
线性回归(Linear Regression)是一种用于预测一个连续型目标变量(因变量)与一个或多个自变量(特征变量)之间关系的统计方法。它的基本思想是通过拟合一条直线(在多变量情况下是超平面),来建立自变量和因变量之间的关系模型。
2025-04-05 09:51:48
1175
原创 PyTorch使用(6)-张量形状操作
reshape:用来改变张量的形状,返回一个新的张量。transpose:交换张量的两个维度。permute:按指定的维度顺序重新排列张量的所有维度。view:用来改变张量的形状,要求张量在内存中是连续的。contiguous:确保张量是连续的,可以在需要 view 操作时使用。squeeze:去除张量中维度为1的维度。unsqueeze:在张量的指定位置添加一个维度。
2025-04-03 10:56:48
323
原创 PyTorch使用(4)-张量拼接操作
将多个张量沿指定维度(dim)拼接,生成新张量。所有输入张量的 维度数必须相同。非拼接维度的大小必须一致。张量必须位于 同一设备 且 数据类型相同。适用场景:合并同维度的特征、批量数据拼接等。核心规则1、输入张量维度数相同。2、非拼接维度大小严格一致。3、设备与数据类型一致。优先使用 torch.cat:当需要在现有维度扩展时;需新增维度时选择 torch.stack。功能:将多个张量沿新维度堆叠(非拼接),要求所有输入张量形状严格相同。
2025-04-03 10:55:43
998
原创 PyTorch使用(3)-张量类型转换
共享内存:默认情况下,CPU 张量与 NumPy 数组共享内存,修改会同步。独立副本:使用 .copy() 或 clone() + .numpy() 创建独立数据。设备与梯度:处理 GPU 张量或带梯度张量时,需先移至 CPU 并分离梯度。优先使用 .item():安全且明确,专为标量设计。避免强制类型转换:可能隐藏维度不匹配或设备不一致的问题。处理复杂情况:通过 .squeeze()、.cpu()、.detach() 确保张量符合要求。
2025-03-16 18:01:44
747
原创 PyTorch使用(2)-张量数值计算
数学表示:若矩阵A 和 B形状相同(均为 m×n),则它们的阿达玛积 A⊙B 定义为:即对应位置元素相乘,结果仍为m×n的矩阵。与矩阵乘法的区别:元素级操作,形状严格相同。矩阵乘法(点积):线性代数操作,要求 A 的列数 = B 的行数,结果形状为(A的行数,B的列数)。优先使用 @ 或 torch.matmul:灵活支持多维张量和广播。明确场景选择函数:简单 2D 乘法 → torch.mm;固定批次 3D 乘法 → torch.bmm形状检查:始终确保最后两维满足矩阵乘法规则。
2025-03-16 16:43:08
1084
原创 PyTorch使用(1)-张量的创建
方法用途根据数据创建张量,自动推断数据类型。根据形状创建未初始化的张量。创建整数类型(torch.int32)的张量。创建浮点类型(torch.float32)的张量。创建双精度浮点类型(torch.float64)的张量。创建指定数据类型的张量(推荐,更直观且灵活)。方法用途创建等间隔的整数张量。创建等间隔的浮点数张量。设置随机种子,确保实验可重复。初始化随机种子。创建标准正态分布的随机张量。创建 [0, 1) 区间内均匀分布的随机张量。创建指定范围内的整数随机张量。方法。
2025-03-13 23:46:05
812
1
原创 机器学习模型开发知识沉淀
在使用算法去挖掘数据中的规律时,离不开准确的数据支撑。然而在不同场景挖掘模型中,使用的训练数据也有着很大区别,选择恰当的入模特征,对模型最终效果起着决定性作用。数据选择步骤发现问题数据:识别缺失值、重复值、异常值(Outliers)或噪声数据,判断是否需要清洗或修正。验证数据一致性:检查字段格式(如日期、数值类型)、单位是否统一,避免因数据错误导致模型偏差。识别数据偏差:发现数据分布不平衡(如分类任务中类别不均衡)、采样偏差或时间序列中的断档问题。统计特征分析:计算均值、方差、分位数、偏度(Skewness
2025-02-13 00:23:01
1040
原创 定时执行脚本、删除上月的文件、crontab配置
在尾行增加一行,${path}为脚本路径。在尾行增加一行,${path}为脚本路径。在尾行增加一行,${path}为脚本路径。
2025-02-09 21:34:04
353
原创 python时间和字符串的格式化互相转换
python经常需要时间格式转化,可以采用 time或者datetime模块进行处理,常用的有以下几个函数:(1)strftime 日期转字符串(2)strptime字符串转日期(3)timedelta 时间差。
2025-02-09 19:59:30
358
原创 mysql8.0解压安装
计算机“右键”——属性——高级系统设置——高级——环境变量——系统变量——找到Path——点击编辑——点击新增,添加 E:\mysql-8.0.26-winx64\bin ——点击保存。解决方案:计算机“右键”——属性——高级系统设置——高级——环境变量——系统变量——找到Path——点击编辑——点击新增,添加 %SystemRoot%\system32 ——点击保存。所以我们需要修改用户的加密方式,将其改为之前的加密验证方式:mysql_native_password。
2023-03-04 13:24:31
249
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人