一元线性回归(二) ----模型的评估与判定系数

本文详细介绍了判定系数在评估一元线性回归模型中的作用,通过误差平方和SSE、总平方和SST和回归平方和SSR的概念,解释了判定系数如何衡量模型的拟合优度。以披萨饼店销售数据为例,展示了如何计算判定系数,并探讨了判定系数与相关系数的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判定系数:用于估计回归方程是否很好的拟合了样本的数据,判定系数为估计的回归方程提供了一个拟合优度的度量

1  误差平方和---SSE

对于样本中的第i次的观测值,应变量的观测值y_{i}和应变量的预测值\hat{y}_{i}之间的离差为第i个残差,第i个残差表示用\hat{y}_{i}去估计y_{i}的误差,

于是,对于第i次观测值,它的残差是y_{i} - 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值