Hive Lateral View + explode 详解

hive中的函数分为3类,UDF函数、UDAF函数、UDTF函数

  • UDF:一进一出
  • UDAF:聚集函数,多进一出,类似于:count/max/min
  • UDTF:一进多出,如explore()、posexplode(),UDTF函数的时候只允许一个字段

百度explode()时,经常会出现lateral view + explode相关的文章,很少单独写explode()。分别了解ecplode() 与lateral view的各自作用很重要,不然过程都不知道实现的,换个UDTF函数就不会使用了。

一、UDTF函数 explode() 讲解

UDTF函数作用都是输入一行数据,将该行数据拆分、并返回多行数据。不同UDTF函数只是拆分的原理不同、作用的数据格式不同而已。
这里详细讲解explode()用法,学会这一个其他的UDTF函数也会使用。

explode()将一行数据转换成列数据,可以用于arraymap类型的数据
1)explode()用于array的语法如下:

select explode(arraycol) as newcol from tablename;

#arraycol:arrary数据类型字段。
#tablename:表名

2)explode()用于map的语法如下:

select explode(mapcol) as (keyname,valuename) from tablename;
#tablename:表名
#mapcol:map类型的字段
#keyname:表示key转换成的列名称,用于代表key转换之后的列名。
#valuename:表示value转换成的列名称,用于代表value转换之后的列名称。

explode()用于map类型的数据时,由于map是kay-value结构的,所以它在转换的时候会转换成两列,一列是kay转换而成的,一列是value转换而成的。

3)以上为explode()函数的用法,此函数存在局限性:

  • 其一:不能关联原有的表中的其他字段。
  • 其二:不能与group by、cluster by、distribute by、sort by联用。
  • 其三:不能进行UDTF嵌套。
  • 其四:不允许选择其他表达式。

二、百度explode(),总会出现lateral view,它们各自的作用是什么?

第一部分对explode()函数做了简单的讲解,知道它作用的数据格式为array和map ,也知道了如何单独使用explode,可能脑袋还是有点懵,下面将结合案例一起学习。

UDTF函数(如:explode)只能只允许对拆分字段进行访问,即select时只能出现explode作用的字段,不能在选择表中其它的字段,否则会报错。
但是实际中需求中经常要拆某个字段,然后一起与别的字段一起取。这时就要使用lateral view。

lateral view为侧视图,其实就是用来和像类似explode这种UDTF函数联用的,lateral view会将UDTF生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行join来达到连接UDTF外的select字段的目的。

不加lateral view的UDTF函数只能提取单个字段拆分,并不能塞回原来数据表中。加上lateral view就可以将拆分的单个字段数据与原始表数据关联上。在使用lateral view的时候需要指定视图别名生成新列别名。

1、udtf + lateral view 格式一

lateral view udtf(expression) tableAlias as columnAlias (,columnAlias)*
  • lateral view在UDTF前使用,表示连接UDTF所分裂的字段。
  • UDTF(expression):使用的UDTF函数,例如explode()。
  • tableAlias:表示UDTF函数转换的虚拟表的名称。
  • columnAlias:表示虚拟表的虚拟字段名称,如果分裂之后有一个列,则写一个即可;如果分裂之后有多个列,按照列的顺序在括号中声明所有虚拟列名,以逗号隔开。

2、udtf + lateral view 格式二

from basetable (lateral view)*
  • 在from子句中使用,一般和格式一搭配使用,这个格式只是说明了lateral view的使用位置。
  • from子句后面也可以跟多个lateral view语句,使用空格间隔就可以了。
eg:
SELECT myCol1, myCol2 FROM baseTable
LATERAL VIEW explode(col1) myTable1 AS myCol1
LATERAL VIEW explode(col2) myTable2 AS myCol2;

#col1为表baseTable字段中的map或者array类型
#col2为表baseTable字段中的map或者array类型

3、udtf + lateral view 格式三

from basetable (lateral view outer)*
from basetable (lateral view outer)*

它比格式二只是多了一个outer,这个outer的作用是在UDTF转换列的时候将其中的也给展示出来UDTF默认忽略输出空的,加上outer之后,会将空也输出,显示为NULL。这个功能是在Hive0.12是开始支持的。

eg:
select name,key,value from student_score lateral view outer explode(score) scntable as key,value;

-------------可借助下面逻辑理解-------------
 

# 查看表数据
hive> select * from udtf_test;
OK
jim5    ["james5","datacloase"]
jim4    ["james4","datacloase"]
jim3    ["james3","datacloase"]
jim2    ["james2","datacloase"]
Time taken: 0.084 seconds, Fetched: 4 row(s)

# 1)hive只允许对其拆分字段进行访问
hive> select explode(subordinates) from udtf_test;
OK
james5
datacloase
james4
datacloase
james3
datacloase
james2
datacloase
Time taken: 0.075 seconds, Fetched: 8 row(s)

#2)同时select 查询 explode作用字段及其它字段时,报错
hive> select explode(subordinates),name from udtf_test;
FAILED: SemanticException 1:29 Only a single expression in the SELECT clause is supported with UDTF's. Error encountered near token 'name'

#3)借助lateral view,同时查询explode作用字段及其它字段
hive> select name,subordinate from udtf_test
    > lateral view explode(subordinates)sub as subordinate;
OK
jim5    james5
jim5    datacloase
jim4    james4
jim4    datacloase
jim3    james3
jim3    datacloase
jim2    james2
jim2    datacloase
Time taken: 0.06 seconds, Fetched: 8 row(s)

三、explode、posexplode与lateral view 3套案例练习

拓展:
        explode与lateral view在关系型数据库中本身是不该出现的,因为他的出现本身就是在操作不满足第一范式的数据(每个属性都不可再分),本身已经违背了数据库的设计原理(不论是业务系统还是数据仓库系统)
        不过大数据技术普及后,很多类似pv,uv的数据,在业务系统中是存贮在非关系型数据库中,用json存储的概率比较大,直接导入hive基础的数仓系统中,就需要经过ETL过程解析这类数据,explode与lateral view在这种场景下大显身手。

1、找出相同数字的号码超过5位的手机号

1) 使用数据

jimmhe  18191512076
xiaosong    18392988059
jingxianghua    18118818818
donghualing 17191919999

2) 创建表

CREATE TABLE udtf_test1(
  name string, 
  phonenumber string)
ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY '\t'

3) 加载数据

load data local inpath '/home/atguigu/data/test_20211215.txt' into table udtf_test1;

4) 查看加载表数据

hive> select * from udtf_test1;
OK
jimmhe  18191512076
xiaosong    18392988059
jingxianghua    18118818818
donghualing 17191919999
Time taken: 0.076 seconds, Fetched: 4 row(s)

5) 解题分析思路
split将电话号码,拆分成数组,在用explode炸裂:

select name,phonenumber
from(
select 
    name
    ,phonenumber
    ,phone_num
from udtf_test1
lateral view explode(split(phonenumber,'')) view_number as phone_num)aa
group by name,phonenumber,phone_num
having count(1)>=5

2、求一下每个学生成绩最好的学科及分数、最差的学科及分数、平均分数

有一张hive表,分别是学生姓名name(string),学生成绩score(map<string,string>),成绩列中key是学科名称,value是对应学科分数,请用一个hql求一下每个学生成绩最好的学科及分数、最差的学科及分数
1)表数据如下:

zhangsan|Chinese:80,Math:60,English:90
lisi|Chinese:90,Math:80,English:70
wangwu|Chinese:88,Math:90,English:96
maliu|Chinese:99,Math:65,English:60

2)创建表:

create table stu_score_test(name string,score map<String,string>)
row format delimited
fields terminated by '|'
collection items terminated by ','
map keys terminated by ':';

3)导入数据:

load data local inpath '/home/atguigu/data/test_20211216' into table stu_score_test;

4)查看导入后表数据

hive> select * from stu_score_test;
OK
zhangsan    {"Chinese":"80","Math":"60","English":"90"}
lisi    {"Chinese":"90","Math":"80","English":"70"}
wangwu  {"Chinese":"88","Math":"90","English":"96"}
maliu   {"Chinese":"99","Math":"65","English":"60"}
Time taken: 0.164 seconds, Fetched: 4 row(s)

5)解题思路
explode拆分map数据类型:

select 
    name,course,csorce
from(
    select 
        name
        ,course
        ,csorce 
        ,rank()over(partition by name order by csorce) last_rn
        ,rank()over(partition by name order by csorce desc) best_rn
    from stu_score_test
    lateral view  explode(score)  score_view as course,csorce
    )aa
where last_rn=1 or best_rn=1

3、计算酒店每天有多少个房间的入住---重点

1)需求如下

2)原始数据

7,2004,2021-03-05,2021-03-07
23,2010,2021-03-05,2021-03-06
7,1003,2021-03-07,2021-03-08
8,2014,2021-03-07,2021-03-08
14,3001,2021-03-07,2021-03-10
18,3002,2021-03-08,2021-03-10
23,3020,2021-03-08,2021-03-09
25,2006,2021-03-09,2021-03-12

3) 建表

create table temp_hotal_live(
user_id  varchar(50),
room_code  varchar(50),
Check_date varchar(50),
leave_date varchar(50)
)
ROW FORMAT DELIMITED 
  FIELDS TERMINATED BY ','
;

4) 分析思路
用posplode炸裂,补充完整时间:

SELECT 
start_dd,end_dd,count(1)
from
(SELECT
    user_id,  --用户id
    check_date,  --入店时间
    leave_date,  --离店时间
    date_add( check_date, pos ) start_dd,
    date_add( check_date, pos+1 ) end_dd
    FROM
    temp_hotal_live
    lateral VIEW 
    posexplode ( split ( REPEAT('A,',datediff( leave_date, check_date )) , ',' ) ) t AS pos, val
)
group BY start_dd,end_dd
  • datediff,计算住了多少天,两个时间之间的差值;
  • REPEAT(),把字符串复制多少次,把'A,'本题是把A,复制;
  • split,把字符串按分隔符分割为数组;
  • posexplode :炸裂,并排序; 可以行转列,并把索引取出。

<think>好的,我现在需要回答用户关于CASE WHEN + GROUP BY和EXPLODE() + LATERAL VIEW在行列转换中的应用的问题。首先,我得确保自己理解这两个方法的具体用途和区别。 用户提到的CASE WHEN + GROUP BY组合,通常用于将多行数据汇总成单行,也就是行转列。比如,假设有一个销售数据表,每个地区有多个月份的数据,使用CASE WHEN可以为每个月份创建单独的列,然后通过GROUP BY地区进行聚合,这样每个地区就有一行,各月份的数据作为列显示。这种方法适用于已知需要转换的列的情况,比如固定的月份或类别。 然后是EXPLODE() + LATERAL VIEW,这应该是在Hive或Spark SQL中使用的,用于处理嵌套数据结构,比如数组或Map。EXPLODE函数可以将数组中的每个元素转换成单独的行,实现列转行。例如,如果有一个字段存储了多个标签,使用EXPLODE后每个标签都会成为一行,结合LATERAL VIEW可以将其与其他列一起展开。这种方法适用于需要将一列中的复杂结构拆分为多行的情况,比如将数组中的元素展开。 接下来,我需要确认这两种方法的具体语法和使用场景,确保给出的示例正确。比如,CASE WHEN的例子可能需要创建月份列,并对每个月的销售额进行SUM和CASE WHEN判断,然后按地区GROUP BY。而EXPLODE的例子可能需要一个包含数组列的表,使用LATERAL VIEW EXPLODE将数组拆分为多行。 同时,要注意区分行转列和列转行的不同。用户可能混淆了这两个概念,所以需要明确说明CASE WHEN + GROUP BY用于行转列,而EXPLODE + LATERAL VIEW用于列转行。此外,需要提到这两种方法适用的场景,比如已知列数的情况和动态拆分的情况,以及它们在不同SQL环境中的支持情况,比如EXPLODEHive中的使用。 还需要检查是否有语法错误,比如在SQL示例中是否正确使用了大写关键字,是否正确使用了别名,以及LATERAL VIEW的位置是否正确。例如,LATERAL VIEW应该紧跟在FROM子句之后,使用正确的语法结构。 最后,总结两者的区别,帮助用户理解何时选择哪种方法。可能需要指出性能方面的考虑,比如GROUP BY可能导致数据倾斜,而EXPLODE处理大数据量时的效率问题。同时,提醒用户根据数据结构和使用场景选择合适的方法。</think>在SQL中,`CASE WHEN + GROUP BY` 和 `EXPLODE() + LATERAL VIEW` 是两种实现行列转换的常见方法,但适用场景和底层逻辑有本质区别。以下分步骤详解: --- ### 一、CASE WHEN + GROUP BY(行转列) **目标**:将多行数据聚合成单行,生成新的列(类似Excel的透视表)。 **适用场景**:已知固定分类值(如月份、类型),需横向展开为列。 #### 示例语法 ```sql SELECT region, SUM(CASE WHEN month = '2023-01' THEN sales ELSE 0 END) AS sales_jan, SUM(CASE WHEN month = '2023-02' THEN sales ELSE 0 END) AS sales_feb FROM sales_table GROUP BY region; ``` #### 关键点 1. **CASE WHEN**:为每个目标列定义条件筛选逻辑。 2. **聚合函数**:常用 `SUM()`, `MAX()` 等确保结果唯一。 3. **GROUP BY**:按分组键聚合数据。 --- ### 二、EXPLODE() + LATERAL VIEW(列转行) **目标**:将复杂类型(数组、Map)的列拆分为多行。 **适用场景**:处理嵌套结构(如JSON数组),需纵向展开为行。 #### 示例语法 ```sql SELECT user_id, exploded_order FROM orders_table LATERAL VIEW EXPLODE(order_list) exploded_table AS exploded_order; ``` #### 关键点 1. **EXPLODE()**:将数组/Map中的元素拆分为多行。 2. **LATERAL VIEW**:与主表关联,保留原表其他字段。 3. **别名定义**:需为爆炸后的字段和虚拟表指定别名(如 `exploded_order`)。 --- ### 三、核心区别对比 | 特性 | CASE WHEN + GROUP BY | EXPLODE() + LATERAL VIEW | |---------------------|------------------------------|---------------------------| | **方向** | 行转列 | 列转行 | | **输入数据类型** | 标量值 | 数组/Map等复杂类型 | | **分类值确定性** | 需提前知道所有分类值 | 动态拆分元素 | | **典型场景** | 固定维度聚合(如月度报表) | 处理嵌套数据(如用户标签)| --- ### 四、进阶注意事项 1. **动态列问题**:`CASE WHEN` 需手动定义所有列,若分类值动态变化,需结合动态SQL生成语句。 2. **性能优化**: - `GROUP BY` 可能导致数据倾斜,可尝试分桶聚合。 - `EXPLODE` 在大数据量时可能产生Shuffle,需调整分区策略。 3. **Hive兼容性**:`LATERAL VIEW EXPLODE` 是Hive语法,Spark SQL中也可使用,但其他数据库(如MySQL)需用 `JSON_TABLE` 等替代方案。 --- ### 五、总结 - 若需 **聚合分散的行数据到列**,选择 `CASE WHEN + GROUP BY`。 - 若需 **拆分嵌套结构为独立行**,选择 `EXPLODE() + LATERAL VIEW`。 根据数据形态和业务需求灵活组合这两种方法,可高效完成行列转换任务。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值