【人工智能系列经典图书翻译】可解释机器学习(第二版)

欢迎大家指出其中的错漏之处,不胜感激!

可解释机器学习(第二版)
目录

内容提要

机器学习对于改进产品、过程和研究有很大的潜力。但是计算机通常不能解释它们的预测,这是机器学习的一大障碍。这本书是关于让机器学习模型和它们的决策可解释。

在探索了可解释性的概念之后,您将了解简单的、可解释的模型,如决策树、决策规则和线性回归。本书的重点是用与模型无关的方法来解释黑盒模型,例如特征重要性和累积的局部效应,以及用 Shapley 值和 LIME 解释个别预测。此外,本书还介绍了特定于深度神经网络的方法。

所有的解释方法进行了深入的解释和批判性的讨论。它们怎么在引擎盖下工作?它们的优点和缺点是什么?如何解释它们的输出?本书将使您能够选择和正确应用最适合您的机器学习项目的解释方法。推荐机器学习从业者、数据科学家、统计学家以及任何对让机器学习模型可解释感兴趣的人阅读本书。

以下为原作者联系方式

Mail: christoph.molnar.ai@gmail.com

Website: https://christophm.github.io/

可以推特上关注原作者@ChristophMolnar

封面图片由 @YvonneDoinel提供

可以在 leanpub.com 上购买PDF 和电子书版本(epub、mobi)

可以在亚马逊上购买印刷版。

可解释机器学习(第二版)翻译 Jiazhen

分章节进行整理。校对时按照原格式进行排版,原文见在线版或pdf

中文翻译

  • CSDN博主 wizardforcel 翻译的大部分章节译者注:第一版)。CSDN是中国的一个程序员线上社区网站。
  • CSDN博主 Jiazhen的完整翻译译者注:第二版)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值