海量数据处理分析
笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:
一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
三、要求很高的处理方法和技巧。这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
那么处理海量数据有哪些经验和技巧呢,我把我所知道的罗列一下,以供大家参考:
一、选用优秀的数据库工具
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要,例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。
二、编写优良的程序代码
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
三、对海量数据进行分区操作
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷,而且还可以将日志,索引等放于不同的分区下。
四、建立广泛的索引
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
五、建立缓存机制
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。
六、加大虚拟内存
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理,内存为1GB,1个P4 2.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为 4096*6 + 1024 = 25600 M,解决了数据处理中的内存不足问题。
七、分批处理
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
八、使用临时表和中间表
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作,可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
九、优化查询SQL语句
在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
十、使用文本格式进行处理
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择,是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
十一、 定制强大的清洗规则和出错处理机制
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
十二、 建立视图或者物化视图
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
十三、 避免使用32位机子(极端情况)
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
十四、 考虑操作系统问题
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
十五、 使用数据仓库和多维数据库存储
数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
十六、 使用采样数据,进行数据挖掘
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
一个很有意义的SQL的优化过程(一个电子化支局中的大数据量的统计SQL)
select count(distinct v_yjhm)
from (select v_yjhm
from zjjk_t_yssj_o_his a
where n_yjzl > 0
and d_sjrq between to_date('20070301', 'yyyymmdd') and
to_date('20070401', 'yyyymmdd')
and v_yjzldm like '40%'
and not exists(select 'a' from INST_TRIG_ZJJK_T_YSSJ_O b where a.v_yjtm=b.yjbh)
--and v_yjtm not in (select yjbh from INST_TRIG_ZJJK_T_YSSJ_O)
union
select v_yjhm
from zjjk_t_yssj_u_his a
where n_yjzl > 0
and d_sjrq between to_date('20070301', 'yyyymmdd') and
to_date('20070401', 'yyyymmdd')
and v_yjzldm like '40%'
and not exists(select 'a' from INST_TRIG_ZJJK_T_YSSJ_U b where a.v_yjtm=b.yjbh))
--and v_yjtm not in (select yjbh from INST_TRIG_ZJJK_T_YSSJ_U))
说明:1、zjjk_t_yssj_o_his 、zjjk_t_yssj_u_his 的d_sjrq 上都有一个索引了
2、zjjk_t_yssj_o_his 、zjjk_t_yssj_u_his 的v_yjtm 都为 not null 字段
3、INST_TRIG_ZJJK_T_YSSJ_O、INST_TRIG_ZJJK_T_YSSJ_U 的 yjbh 为PK
优化建议:
1、什么是DISTINCT ? 就是分组排序后取唯一值 ,底层行为 分组排序
2、什么是 UNION 、 UNION ALL ? UNION : 对多个结果集取DISTINCT ,生成一个不含重复记录的结果集,返回给前端,UNION ALL :不对结果集进行去重复操作 底层行为:分组排序
3、什么是 COUNT(*) ? 累加
4、需要有什么样的索引? S_sjrq + v_yjzldm : 理由: 假如全省的数据量在表中全部数为1000万,查询月数据量为200万,1000万中特快占50%, 则 通过 beween 时间(d_sjrq)+ 种类( v_yjzldm ),可过滤出约100万,这是最好的检索方式了。
5、两表都要进行一次 NOT EXISTS 运算,如何做最优? NOT EXISTS 是不好做的运算,但是我们可以合并两次的NOT EXISTS 运算。让这费资源的活只干一次。
综合以上,我们可以如下优化这个SQL:
1、内部的UNION 也是去重复,外部的DISTINCT 也是去重复,可左右去掉一个,建议内部的改为 UNION ALL , 这里稍请注意一下,如果V_YJHM 有NULL的情况,可能会引起COUNT值不对实际数的情况。
2、建一个 D_SJRQ+V_YJZLDM 的复合索引
3、将两个子查询先 UNION ALL 联结 , 另两个用来做 NOT EXISTS 的表也 UNION ALL 联结
4、在3的基础上再做 NOT EXISTS
5、将NOT EXISTS 替换为NOT IN ,同时加提示 HASH_AJ 做半连接HASH运算
6、最后为外层的COUNT(DISTINCT … 获得结果数
SQL书写如下:
select count(distinct v_yjhm)
from (select v_yjtm, v_yjhm
from zjjk_t_yssj_o_his a
where n_yjzl > 0
and d_sjrq between to_date('20070301', 'yyyymmdd') and
to_date('20070401', 'yyyymmdd')
and v_yjzldm like '40%'
union all
select v_yjtm, v_yjhm
from zjjk_t_yssj_u_his a
where n_yjzl > 0
and d_sjrq between to_date('20070301', 'yyyymmdd') and
to_date('20070401', 'yyyymmdd')
and v_yjzldm like '40%'
) a
where a.v_yjtm not IN
(select /*+ HASH_AJ */
yjbh
from (select yjbh
from INST_TRIG_ZJJK_T_YSSJ_O
union all
select yjbh from INST_TRIG_ZJJK_T_YSSJ_U))
经过上述改造,原来这个SQL的执行时间如果为2分钟的话,现在应该20秒足够!
如何优化大数据量模糊查询(架构,数据库设置,SQL..)
请各位大虾对如下需求提供点意见:
1。实时查询某当日或指定时间段的所有交易记录。
2。实时查询一批记录,查询条件不确定,条件几乎包含所有字段,可自由组合)
3。查询返回数据量可非常大,百万纪录级。
目前系统采用三层结构,中间层是cics,按目前使用的查询方式,系统资源占用大,速度慢,对实时交易会造成影响。
并且速度明显慢于原C/S结构,如C/S结构用2秒,现在可能要10秒。想征询一下是否有好的解决方案,能使三层结构的批量查询快于C/S结构的查询。
由于客户的环境是中间件和DB各一台服务器,所以无法作负载均衡。
由于客户在外地,他们提供的信息有限,我无法做出更多的判断。不过本周我将赴外地,作测试,步骤和biti的类似。
基本思路是首先确认2层和3层是否做完全相同的查询,然后比较执行时间,判断瓶颈,以决定对中间层还是对db和sql进行优化。
针对你的3个条件做一下回答:
1。可以考虑使用以时间做条件的partition
2。总有一两个条件选择性高,使用频率又高的,考虑加索引。
3。既然是3层结构,那就不应该把那么高的数据料一次返回给Client,可以考虑把处理过程放在中间层,或者使用分页技术,根据需要分段返回。
海量数据处理分析
最新推荐文章于 2023-07-01 04:16:04 发布