- 博客(38)
- 收藏
- 关注
原创 黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
本文提出了一种基于YOLOv8的改进模型,结合Fasternet轻量网络和BiFPN特征融合技术,用于黄瓜植株检测。该方案解决了农业场景中植株密集、遮挡严重、光照变化大等挑战。实验结果表明,改进模型在自建数据集上达到90.5%的mAP@0.5,参数量4.8M,推理速度38.7FPS,优于原始YOLOv8模型。研究还探讨了模型部署流程,包括量化、剪枝等技术优化,使其适用于农业无人机等资源受限设备。该方案为农业智能化管理提供了有效的技术支撑。
2026-01-15 09:50:58
212
原创 YOLO11-C2TSSA-DYT-Mona-EDFFN改进模型_基于深度学习的起重机与吊载物检测识别研究
本文提出了一种改进的YOLO11-C2TSSA-DYT-Mona-EDFFN模型用于起重机与吊载物检测。针对工业场景中的尺度变化大、背景复杂等挑战,模型融合了C2TSSA特征增强模块、DYT动态注意力机制、Mona多尺度优化结构和EDFFN深度特征融合网络。实验结果表明,该模型在专用数据集上显著提升了检测性能,相比基准模型在小目标检测准确率提升8.5%,遮挡情况下提升9.7%,mAP达到0.892。研究为工业场景下的目标检测提供了有效解决方案。
2026-01-15 00:00:20
468
原创 如何使用YOLOv10n-p2训练金属表面缺陷检测数据集——裂纹与气孔识别与定位技术探讨
本文探讨了使用YOLOv10n-p2模型进行金属表面缺陷检测的技术方案。研究重点针对裂纹和气孔两类常见缺陷,详细介绍了数据集构建、预处理方法和模型训练流程。YOLOv10n-p2作为最新目标检测模型,通过动态标签分配和改进的特征金字塔网络,在COCO数据集上实现了0.912的mAP@0.5和145FPS的性能。实验结果表明,该模型在金属缺陷检测任务中表现优异,对裂纹检测的AP@0.5达到0.932,气孔检测为0.892,相比YOLOv8等模型有明显提升。研究还分析了模型对不同尺寸缺陷的检测性能差异,为工业质
2026-01-14 17:01:39
391
原创 如何使用YOLOv10n进行台风灾害区域识别与分类——基于改进的HAFB-2模型实现
本文提出了一种基于改进YOLOv10n和HAFB-2模型的台风灾害区域识别方法。通过引入注意力机制、多尺度特征融合和残差连接,显著提升了台风特征提取能力。实验结果表明,该方法在mAP、F1分数等指标上优于传统算法,mAP达到0.892,比基础YOLOv10n提升11个百分点。该方法训练时间短(6.8小时),推理速度快(38.7FPS),能够高效识别台风眼墙、螺旋云带等关键区域,为防灾减灾提供技术支持。
2026-01-14 15:26:42
396
原创 YOLOv10n-timm芯片堆叠计数与分类识别实战指南
本文介绍了基于YOLOv10n算法的芯片堆叠计数检测系统。针对芯片检测中目标微小、密集分布等难点,构建了包含6类芯片、3349张图像的数据集,采用数据增强技术提升模型泛化能力。优化后的YOLOv10n算法集成TIMM预训练模型,改进特征提取和多尺度检测策略,并设计密度图估计方法解决计数难题。实验结果显示,模型mAP@0.5达95.2%,计数误差率仅2.1%,推理速度115FPS,显著优于对比模型。实际产线测试验证了系统的实用性和可靠性,为芯片制造提供了高效自动化检测方案。未来将探索轻量化网络和三维视觉技术以
2026-01-14 13:45:09
538
原创 农田杂草识别六种常见杂草马唐马齿苋鳢肠千金藤牵牛花莎草YOLO11模型训练与应用详解
本文详细介绍了基于YOLO11模型的农田杂草识别方法,针对六种常见杂草(马唐、马齿苋、鳢肠、千金藤、牵牛花和莎草)进行精准检测。通过改进特征金字塔网络和自适应数据增强策略,模型在复杂农田环境中表现出色。实验结果表明,YOLO11在mAP@0.5指标达到0.891,优于主流检测模型,其中牵牛花识别F1分数最高(0.915)。该方法为精准农业中的杂草治理提供了高效解决方案,实现了高精度与实时性的平衡。
2026-01-14 12:20:40
464
原创 农田杂草识别与分类:基于Faster R-CNN的优化模型实践与性能分析
本文介绍了一种基于Faster R-CNN的农田杂草识别优化模型。针对传统杂草识别方法效率低的问题,研究团队构建了包含10种常见杂草的数据集,通过引入特征金字塔网络、优化损失函数和轻量化改进等措施,使模型mAP达到85.7%,参数量减少62%。实验表明优化模型在保持较高推理速度的同时显著提升了检测精度。研究还探讨了实际应用中的复杂背景干扰、光照变化等挑战及应对方案,并展望了多模态数据融合、杂草生长状态识别等未来研究方向。该技术有助于实现精准除草,提高农业生产效率。
2026-01-14 09:34:57
385
原创 X射线安检图像中的危险物品检测与识别_yolov5-AFPN-P345改进方案
本文提出了一种基于YOLOv5和改进AFPN网络的X射线安检图像危险物品检测方案。针对安检图像中物品尺度变化大、遮挡严重等问题,重点优化了P3、P4、P5特征金字塔的融合方式,引入动态特征融合和跨尺度注意力机制。实验结果表明,改进后的模型在公开数据集上达到87.9%的mAP@0.5,较基线提升5.6%,尤其在小目标和遮挡目标检测上表现突出。通过模型剪枝和量化,实现了60%的体积压缩和2倍速度提升,满足实时检测需求。该方案为安检自动化提供了有效的技术支撑,未来可进一步探索3D信息融合和无监督学习等方向。
2026-01-13 19:01:09
417
原创 YOLOv8实现油田钻井设备与人员识别:OREPANCSPELAN技术解析
本文提出了一种基于YOLOv8的油田钻井设备与人员智能识别系统,采用独创的OREPANCSPELAN技术框架。该系统通过优化数据增强、鲁棒特征提取和多尺度检测等技术,实现了对钻机、泵车、人员等目标的精准识别,在复杂油田环境中mAP达到0.786。创新性地融合了红外成像与可见光检测,夜间识别准确率超95%。实验表明,该系统可显著提升油田安全管理效率,降低60%事故率,支持服务器、边缘设备等多平台部署,为油田安全生产提供智能化解决方案。
2026-01-13 17:23:09
433
原创 基于YOLOv10n-RepHMS的蠕虫识别与分类系统实现详解_1
本研究成功地将RepHMS模块集成到YOLOv10n中,构建了一个高效的蠕虫识别与分类系统。实验结果表明,我们的模型在准确性和实时性方面都表现出色,特别是在处理不同类型和大小的蠕虫样本时,具有明显的优势。😎扩展数据集:收集更多种类和变种的蠕虫样本,提高模型泛化能力动态环境适应:研究模型在动态网络环境下的自适应能力轻量化设计:探索更高效的特征提取方式,进一步提升实时性多模态融合:结合流量特征、行为特征等多种数据源,构建更鲁棒的检测模型。
2026-01-13 15:43:58
559
原创 引线键合工艺缺陷检测与工具识别 Faster-RCNN_Res2Net-101_FPN_2x_COCO实现详解
我们的检测系统采用经典的Faster-RCNN作为基础框架,结合Res2Net-101作为骨干网络,FPN作为特征金字塔网络,整体架构如下图所示:Res2Net-101骨干网络:负责提取多尺度特征,相比传统ResNet,Res2Net通过引入多尺度分组卷积,能够更好地捕获不同粒度的特征信息。FPN特征金字塔:将骨干网络输出的多尺度特征进行融合,增强对小目标的检测能力。RPN区域提议网络:生成候选区域,减少后续计算的冗余。ROI分类与回归头:对候选区域进行分类和边界框回归,最终输出检测结果。
2026-01-13 14:10:19
518
原创 葡萄酒标签检测与识别:YOLO11-C3k2-CaFormer模型实现
本文提出了一种改进的YOLO11-C3k2-CaFormer模型用于葡萄酒标签检测与识别。该模型结合CNN和Transformer优势,通过优化C3k2模块的特征提取能力和增强CaFormer的注意力机制,显著提升了检测精度。实验表明,模型在自建数据集上达到95.6%的mAP@0.5,推理速度25FPS,优于原始YOLOv11和单独CaFormer。应用场景包括电商平台自动分类和仓储物流管理,能有效提高工作效率。未来将探索更多注意力机制和轻量化设计,拓展应用范围。
2026-01-13 12:38:31
526
原创 基于YOLO11-seg的MultiSEAMHead驾驶员疲劳检测系统_计算机视觉实时监测_眼睛嘴巴状态识别
本文提出了一种基于YOLO11-seg的MultiSEAMHead驾驶员疲劳检测系统。该系统通过改进的YOLO11-seg模型检测面部关键点,结合多尺度注意力模块MultiSEAMHead分析眼睛和嘴巴状态,实现了高效的疲劳检测。实验表明,该系统在mAP@0.5指标上达到0.892,比原始YOLO11-seg提升5.94%,推理速度为11.7ms,能有效识别不同疲劳程度。系统在实验室环境下表现最佳(mAP@0.925),在自然场景中仍有优化空间。该技术为预防疲劳驾驶事故提供了可靠解决方案。
2026-01-10 11:51:33
613
原创 基于YOLOv5-CARAFE的混凝土裂缝裂纹检测系统从原理到实现详细解析
本文详细介绍了基于YOLOv5-CARAFE的混凝土裂缝检测系统,该系统通过深度学习技术实现裂缝的自动识别。核心算法采用改进的YOLOv5模型,引入CARAFE特征增强模块提升小目标检测能力。系统构建了包含2000张标注图像的数据集,采用两阶段训练策略和多种数据增强方法。实验结果表明,该系统在测试集上达到92.3%的mAP@0.5,相比标准YOLOv5提升3.7个百分点,同时保持较高推理速度。该系统为混凝土结构安全评估提供了高效、准确的自动化解决方案。
2025-12-22 12:42:19
987
原创 铁路轨道鱼尾板检测与识别_YOLO11改进之C3k2-SMAFB融合结构研究
本文提出了一种改进YOLO11的C3k2-SMAFB融合结构用于铁路轨道鱼尾板检测。针对传统C3模块在小目标检测中的不足,创新性地结合C3k2和SMAFB模块,引入空间注意力机制和多尺度特征融合,增强了对鱼尾板特征的提取能力。实验表明,改进模型在保持45FPS实时性的同时,mAP@0.5达到92.3%,较原模型提升5.7%。实际部署中通过轻量化处理,在边缘设备上实现30FPS检测速度,检测效率较人工提升6倍。该研究为铁路安全检测提供了高效解决方案,未来可进一步探索多模态融合和自适应学习等方向。
2025-12-22 11:47:54
841
原创 工业自动化拆卸中的组件识别与定位:Mask R-CNN与ResNet101-FPN模型深度解析_1
工业自动化拆卸中的组件识别与定位技术研究 摘要:本文探讨了基于Mask R-CNN与ResNet101-FPN模型的工业组件识别方法。该模型通过特征金字塔网络增强多尺度特征提取能力,结合目标检测和实例分割功能,实现了高精度组件定位。研究详细介绍了数据预处理、增强策略以及模型训练优化过程,包括损失函数设计、学习率调整等技术细节。实验结果表明,改进后的模型在mAP@0.5、mAP@0.5:0.95和掩码IoU等指标上分别提升8.1%、8.9%和8.9%,同时保持了良好的实时性能。通过电子设备拆卸等实际案例验证了
2025-12-18 13:16:06
754
原创 棒球运动员识别 _ 使用Cascade-RCNN训练模型识别Dragons队、Lions队队员及裁判角色
本文介绍了一种基于Cascade-RCNN的棒球运动员识别系统,用于自动检测Dragons队、Lions队队员及裁判角色。通过收集5000+张比赛图像构建数据集,采用多阶段检测机制优化模型性能。实验结果显示平均mAP达0.863,其中Dragons队员识别效果最佳(0.892)。系统已应用于实时比赛分析、赛后统计等场景,未来计划引入多模态融合和3D姿态估计进一步提升性能。该技术为体育赛事智能化分析提供了有效解决方案。
2025-12-15 16:42:08
778
原创 基于Mask R-CNN的香蕉叶黑斑病检测实战
本文提出了一种改进的Mask R-CNN算法用于香蕉叶黑斑病检测。通过引入Group Normalization替代Batch Normalization,优化特征金字塔网络结构,并改进损失函数,显著提升了模型在小批量训练稳定性、多尺度特征提取和小目标检测方面的性能。实验结果表明,改进算法在自建数据集上mAP达到85.0%,小目标F1-score提升至71.5%。研究还开发了原型检测系统,在复杂环境下保持85%以上的准确率,为农业病害智能检测提供了有效解决方案。
2025-12-15 16:11:01
701
原创 YOLO12-A2C2f-DYT在工程车辆目标检测中的应用与优化详解
本文探讨了YOLO12-A2C2f-DYT模型在工程车辆目标检测中的应用与优化。该模型通过引入A2C2f模块和DYT模块,有效提升了复杂环境下工程车辆的检测精度,特别是针对视角变化、尺寸差异和遮挡等挑战。研究构建了包含10类工程车辆的多场景数据集,并开发了数据格式转换工具。模型采用针对性的数据增强策略,在几何变换、色彩调整和特殊场景模拟等方面进行优化,显著提高了检测性能。实验表明,该模型在工程车辆检测任务中表现出色,为智能监控和工业自动化提供了有效解决方案。
2025-12-12 17:31:36
875
原创 空调冷凝器精准识别:YOLO11-DBB分割模型实战指南
本文介绍了基于YOLO11-DBB分割模型的空调冷凝器精准识别方法。针对冷凝器检测面临的复杂网格结构、光照变化等挑战,该模型通过双分支设计融合目标检测和实例分割优势,实现了92.3%的mAP和89.7%的平均IoU。文章详细阐述了从数据集构建、模型训练到实际部署的全流程,包括数据增强策略、多任务损失函数设计和边缘计算部署方案。实验表明,YOLO11-DBB在保持25FPS实时性能的同时,检测精度显著优于主流算法,为工业视觉检测提供了有效的解决方案。
2025-12-12 16:46:21
924
原创 使用YOLOv8-Seg-FasterNet进行水质透明度分类识别
本文提出了一种基于YOLOv8-Seg-FasterNet的水质透明度自动分类方法。通过改进的FastNet骨干网络和优化的训练策略,模型在1000张水体图像数据集上取得了92.7%的准确率和93.5%的mAP,推理速度达61FPS。实验表明,该方法在精度和效率上均优于传统YOLO系列模型,为水质监测提供了高效可靠的解决方案。研究还验证了深度可分离卷积、多尺度训练等技术对提升模型性能的有效性。
2025-12-10 14:46:19
820
原创 YOLOv10n-EMBSFPN:温室大棚蔬菜表型检测与识别系统实战
本文介绍了基于YOLOv10n-EMBSFPN的温室大棚蔬菜表型检测系统。该系统通过改进的YOLOv10n目标检测算法结合增强多尺度特征融合网络(EMBSFPN),实现对10种常见蔬菜的高精度检测。文章详细阐述了数据集准备、模型架构、训练过程及部署方案,包括数据集目录结构配置、EMBSFPN网络设计、训练参数设置以及边缘设备部署方法。该系统能够实时监测蔬菜生长状态和病虫害情况,为精准农业提供数据支持,特别适合在温室大棚等网络不稳定环境中应用。
2025-12-08 15:35:23
595
原创 改进YOLOv10n-LSKNet实现塑料机械齿轮和齿形识别检测详解
本文提出了一种改进的轻量级YOLOv10n-LSKNet模型,专为工业齿轮检测设计。模型采用Backbone-Neck-Head结构,在Backbone中引入LSKNet模块增强特征提取能力,通过轻量化策略(减少网络深度、调整通道数、引入Ghost模块)将参数量从2.3M降至1.2M,计算量减少53.7%,推理速度提升37.3%。针对齿轮齿形等小目标,优化了检测头和特征金字塔结构,并设计了专门的数据增强策略(几何变换、光照变化、背景干扰)。实验表明,改进后的模型在保持精度的同时显著提升了计算效率,适合工业设
2025-12-08 14:50:49
806
原创 YOLOv8生产线设备状态与人员检测系统_SDFM改进方案
📊 我们的YOLOv8-SDFM检测系统主要包括图像采集模块、预处理模块、目标检测模块和结果输出模块。整个系统采用模块化设计,便于维护和扩展。# 8. 基础骨干网络# 9. 空间-深度特征融合模块# 10. 检测头# 11. 特征提取# 12. 特征融合# 13. 目标检测这个代码展示了我们系统的核心结构。骨干网络负责提取图像特征,SDFM模块对特征进行融合增强,最后通过检测头输出检测结果。
2025-12-03 09:16:56
728
原创 内窥镜医学图像目标识别与分类:YOLO11-CARAFE算法实现与应用
本文提出了一种基于YOLO11-CARAFE算法的内窥镜医学图像目标识别与分类方法。通过将CARAFE上采样算法集成到YOLO11网络中,显著提升了模型对小尺寸病变的检测能力。实验结果表明,该方法在mAP、召回率和精确率等指标上优于传统算法,同时保持了较好的推理速度。文章详细介绍了算法原理、实现细节及TensorRT加速部署方案,为医学影像分析提供了一种高效的自动化解决方案。该系统已成功应用于临床实践,有效提高了疾病诊断的准确性和效率。
2025-12-03 08:46:44
788
原创 Faster-RCNN模型实现柿子果实检测识别
本文提出了一种基于改进FPN的Faster-RCNN柿子果实检测算法,通过引入注意力机制和多尺度特征融合,显著提升了柿子果实检测的精度和鲁棒性。实验结果表明,改进算法在mAP、精确率、召回率等指标上均优于原始算法,且在各种复杂场景下表现出良好的性能。该研究为智能农业中的果实检测提供了有效解决方案,具有实际应用价值。📊 图7展示了算法性能的综合分析,从图中可以看出,改进FPN算法在检测精度、鲁棒性和实时性之间取得了良好的平衡,适合实际部署应用。
2025-12-02 18:11:12
619
原创 O形环缺陷检测与分类:基于YOLO11-C3k2-Star-CAA的智能检测系统_1
本系统采用端到端的深度学习框架,实现了从图像采集到缺陷分类的全流程自动化。系统主要由图像采集模块、预处理模块、检测模块和分类模块组成。其中,检测模块采用了改进的YOLO11架构,通过引入C3k2注意力机制和Star-CAA特征融合策略,有效提升了小目标O形环的检测精度。分类模块则基于残差网络构建,能够对检测到的O形环进行缺陷类型分类,包括裂纹、划痕、变形等常见缺陷类型。本文详细介绍了一种基于改进YOLO11架构的O形环缺陷智能检测系统。
2025-12-02 17:33:33
759
原创 小麦赤霉病智能检测与分类_Sparse-RCNN模型实现_FHB病害识别系统_1
本文提出了一种基于Sparse-RCNN模型的小麦赤霉病智能检测方法。通过收集5000张田间小麦图像构建数据集,采用数据增强和样本平衡策略优化数据质量。Sparse-RCNN模型通过无锚框设计和迭代式预测机制,有效检测复杂场景下的病害斑。实验结果表明,该方法在分类和定位任务上表现优异,为小麦病害自动化监测提供了高效解决方案。
2025-11-29 12:16:42
1000
原创 YOLO11-ConvNeXtV2模型实现胚胎发育状态识别 从数据准备、模型训练、评估到部署完整流程详解
摘要:本文提出了一种基于YOLO11-ConvNeXtV2的胚胎发育状态识别模型。通过ConvNeXtV2骨干网络提取胚胎图像特征,结合YOLO11检测框架实现高精度分类。研究详细介绍了数据准备(包含卵裂期、桑葚期、囊胚期和扩张囊胚期4个阶段)、模型架构(深度可分离卷积+层归一化)和训练策略(余弦退火学习率+早停机制)。实验表明,该模型能有效识别胚胎发育各阶段的形态特征,为辅助生殖技术提供可靠的自动化评估工具。
2025-11-29 11:43:47
1024
原创 YOLO11-C3k2-PKI在机械结构轴部件检测中的应用与优化_1
本文提出了一种改进的YOLO11-C3k2-PKI网络结构,用于机械结构轴部件的高精度检测。通过引入C3k2跨尺度特征融合模块和PKI位置感知模块,有效提升了网络对小目标的检测能力和位置感知精度。该网络在保持实时性的同时,针对轴部件检测任务进行了专门优化,包括多尺度特征融合、通道重校准和位置信息集成。实验结果表明,改进后的网络在机械轴部件检测任务中表现出优异的性能,能够准确识别不同尺寸和位置的轴部件,为工业自动化检测提供了可靠的技术支持。
2025-11-24 16:29:27
584
原创 基于YOLO11-C3k2-FasterFD的路面裂缝检测与分类_1
本文提出了一种基于YOLO11-C3k2-FasterFD的路面裂缝检测系统,通过改进的C3k2模块和FasterFD机制实现了高效检测。系统采用分层架构设计,包含数据预处理、模型训练和应用展示三个模块。实验表明,该方法在10,000张图像的数据集上达到92.5%的准确率和30FPS的检测速度,显著优于传统方法。优化策略包括动态锚点生成和多尺度特征融合,有效提升了细小目标的检测性能。该系统已成功应用于实际道路检测项目,为智能交通系统提供了可靠的自动化解决方案。
2025-11-24 15:16:33
87
原创 网络设备端口状态识别与分类实战:使用YOLO11-ReCalibrationFPN模型实现高精度检测
摘要: 本文提出基于改进的YOLO11-ReCalibrationFPN模型实现网络设备端口状态高精度检测。通过优化特征金字塔模块增强多尺度特征融合能力,在93张标注数据(含FIBER、GREEN等4类状态)上取得mAP@0.5达92.3%的识别精度。实验采用NVIDIA RTX 3090硬件环境,结合数据增强和两阶段训练策略,最终模型推理速度达28FPS,可部署于边缘设备实现实时监控。结果表明该方法显著提升网络运维自动化水平,为故障诊断提供可靠技术支持。(149字) 关键词: 端口状态识别、YOLO11、
2025-11-22 18:29:27
100
原创 YOLO11-CSFCN扑克牌检测与识别系统实现_52种花色点数分类
本文提出了一种基于YOLO11和CSFCN的扑克牌检测识别系统。系统采用两阶段架构:YOLO11模型实现扑克牌区域检测(mAP达92.3%),CSFCN网络完成52种花色点数的分类。关键技术包括:1)YOLO11m模型的Anchor-Free设计和两阶段训练策略;2)CSFCN网络引入轻量级注意力机制提升分类精度;3)采用Mosaic增强、标签平滑等优化方法。实验表明,该系统在RTX3060上达到45FPS的实时性能,准确率显著优于传统方法。
2025-11-22 17:58:03
126
原创 YOLOv8结合Seg与FastNet实现车辆车牌检测识别实战
车辆车牌检测识别系统实战 本文介绍了一个基于YOLOv8、Seg和FastNet的车辆车牌检测识别系统,包含以下关键内容: 系统架构:采用三阶段处理流程(车辆检测→车牌分割→字符识别),模块化设计便于优化 数据集准备:推荐使用CCPD、OpenALPR等专业车牌数据集,强调多场景覆盖以提升模型鲁棒性 技术实现: YOLOv8用于车辆检测 Seg网络实现精确车牌分割 FastNet完成字符识别 优化策略:包括数据增强、学习率调度和早停机制等训练技巧 代码实现:提供了完整的模型训练和网络结构代码示例 该系统适用
2025-11-20 19:24:09
73
原创 咖啡叶片健康检测:基于YOLO11-C2TSSA-DYT-Mona-EDFFN的创新模型实现
本文提出了一种基于YOLO11的创新模型YOLO11-C2TSSA-DYT-Mona-EDFFN用于咖啡叶片健康检测。该模型融合了C2TSSA注意力机制、Mona特征融合模块和EDFFN特征增强网络等创新技术,显著提升了检测性能。实验结果表明,该模型在mAP指标上达到92.7%,比基线模型YOLOv11提升3.8个百分点,同时通过优化减少了13.3M参数量。模型已成功部署到移动端,实现实时检测,为咖啡种植提供有效的病害识别解决方案。
2025-11-20 18:54:06
114
原创 YOLOv8-Ghost模型在消防车目标检测中的应用与优化
消防车检测:YOLOv8-Ghost轻量化模型优化 本文介绍了基于YOLOv8-Ghost轻量化模型的消防车目标检测系统。通过引入Ghost模块减少计算量和参数量,改进后的模型在保持检测精度的同时提升了推理速度。 核心创新 Ghost模块应用:将标准卷积替换为Ghost模块,显著降低计算复杂度 模型轻量化:参数量减少12.5%,计算量降低19.8% 检测性能:mAP@0.5达0.71,推理速度提升至1.0ms 数据集与训练 5000张多场景消防车图像(城市道路/高速公路/应急场景) 采用Mosaic等数据增
2025-11-19 11:16:08
780
原创 睿智的安全装备佩戴检测61基于Yolact实现安全帽检测识别原创
本文介绍了基于Yolact实现的安全帽检测识别系统模型训练模块。该模块采用PySide6框架,支持多种训练框架(MMDetection、Ultralytics),提供可视化的训练管理功能,包括数据集验证、训练流程控制和训练过程监控。系统采用组件化设计,包含标题、图片显示、曲线图等可视化组件,并通过多线程架构实现训练不阻塞UI。特别针对安全帽检测项目,系统提供了专业的数据集验证机制,确保检查图片格式、标注文件等完整性。训练管理器负责整个训练流程控制,包括条件验证、工作线程创建和训练监控。该系统设计有效解决了安
2025-11-19 10:46:52
524
原创 点渲染PointRendImage_Segmentation_as_Render
我们提出了一种高效、高质量的目标和场景图像分割新方法。通过类比经典的计算机图形学方法高效渲染像素标记任务中面临的过采样和欠采样挑战,我们发展了一个独特的视角,将图像分割作为一个渲染问题。该模块基于迭代细分算法,在自适应选择的位置执行基于点的分割预测。PointRend可以通过在现有的最先进的模型之上构建,灵活地应用于实例分割和语义分割任务。PointRend可以输出精确的分割对象。无论是实例还是语义分割,PointRend在COCO和cityscape上都有显著的收益。
2025-10-03 19:13:25
704
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅