CF20C Dijkstra?

面对一个需要使用Dijkstra算法的题目,由于数据规模过大导致内存超限。文章分析了不能使用Bellman-Ford算法的原因,因为它会超时。接着提出通过优化Dijkstra算法的内存使用来解决问题,主要思路是合并边的处理,从而降低内存消耗。经过改造后的代码实现了这一优化。
摘要由CSDN通过智能技术生成

题目描述

题目出处:

已翻译

未翻译(原网站)

在这里插入图片描述

输入

在这里插入图片描述

输出

在这里插入图片描述

样例

输入
5 6
1 2 2
2 5 5
2 3 4
1 4 1
4 3 3
3 5 1
输出
1 4 3 5 

样例规模

在这里插入图片描述

分析与思路

看到这么一个题目,我们首先想到使用Dijkstra算法,但是,当我们看到数据规模是,不难发现:若使用Dijkstra算法,会导致内存超限
那么能否使用Bellman-Ford 算法呢?答案是否定的,如果使用了Bellman-Ford 算法,由于处理数据太多,会导致超时,最后喜提TLE
那怎么办?我们应如何在这种情况下选择合适的算法呢?

换个想法

换一个想法,我们可以想办法解决这两个算法在实现时出现的问题。
先来看看Bellman-Ford 算法,由于Bellman-Ford 算法的工作原理是计算所有点到起点的距离,所以缩短运行时间并不可取
那么我们只能选择Dijkstra算法来解决这个问题,那么如何减少Dijkstra算法的内存占用呢,让我们先看看Dijkstra算法的内存是如何使用的。

const int MXV=0x3f3f3f3f;
const int MXN=1e4+5;
bool flag[MXN+1];//记录每个顶点到起点的最短路径是否已经计算过
int dist[MXN+1];//记录一个顶点到起点的距离
int bi[MXN+1][MXN+1];//记录每条边的边权
vector<int>edges[MXN+1];//记录两顶点之间的关系,是否有边连接两顶点

不难发现,上述代码中,对于边的处理(是否有,边权是多少)占用了很大一部分内存,只要能将二者合二为一,就可以减少对内存的使用

如下为改造过后的部分

const int MXV=0x3f3f3f3f;
const int MXN=1e5+5;
bool flag[MXN+1];
long long dist[MXN+1];
int n,m,u,v,w;
struct Node{
	long long id,dist;
	Node(){}
	Node(int i,int d){
		id=i;dist=d;
	}
	friend bool operator < (Node a,Node b){
		return a.dist>b.dist;
	}
};  
vector<Node>g[MXN+4];//代替了上述部分bi和edges

这样,我们就成功减少了内存的消耗,接下来只要按照这个想法往下写,就可以轻松解决这个问题了

代码实现

#include<bits/stdc++.h>
using namespace std;

const int MXV=0x3f3f3f3f;
const int MXN=1e5+5;
bool flag[MXN+1];
long long dist[MXN+1];
int n,m,u,v,w;
int ljing[MXN+1];
int jingl[MXN+1];
struct Node{
	long long id,dist;
	Node(){}
	Node(int i,int d){
		id=i;dist=d;
	}
	friend bool operator < (Node a,Node b){
		return a.dist>b.dist;
	}
};  
priority_queue<Node>pque;
vector<Node>g[MXN+4];

void Dijkstra(int sid){
	memset(dist,0x3f,sizeof(dist));
	dist[sid]=0;
	pque.push(Node(sid,dist[sid]));
	while(pque.size()){
		Node from=pque.top();pque.pop();
		if(flag[from.id])continue;
		flag[from.id]=true;
		for(int i=0;i<g[from.id].size();i++){
			int to=g[from.id][i].id;
			if(!flag[to] && dist[to]>dist[from.id]+g[from.id][i].dist){
				dist[to]=dist[from.id]+g[from.id][i].dist;
				pque.push(Node(to,dist[to]));
				ljing[to]=from.id;
			}
		}
	}
}

int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
			scanf("%d%d%d",&u,&v,&w);
			g[u].push_back(Node(v,w));
			g[v].push_back(Node(u,w));
	}
	Dijkstra(1);
	if(flag[n]!=true){
		printf("-1");
		return 0;
	}else{
		int op,ui=n,ip=0;
		while(ui!=1){
			op=ljing[ui];
			jingl[++ip]=op;
			ui=op;
		}
		for(int i=ip;i>=1;i--)printf("%d ",jingl[i]);
		printf("%d ",n);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值