多重背包

题目大意:有N种物品和一个容量为V的背包。第i种物品最多有num[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。 

状态转移方程为:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]};

#include <iostream>

#include <string.h>

#include <stdio.h>

using namespace std;

const int N = 1005;

int dp[N];

int c[N],w[N],num[N];

int n,m;

void ZeroOne_Pack(int cost,int weight,int n)

{

    for(int i=n; i>=cost; i--)

        dp[i] = max(dp[i],dp[i-cost] + weight);

}

void Complete_Pack(int cost,int weight,int n)

{

    for(int i=cost; i<=n; i++)

        dp[i] = max(dp[i],dp[i-cost] + weight);

}

int Multi_Pack(int c[],int w[],int num[],int n,int m)

{

    memset(dp,0,sizeof(dp));

    for(int i=1; i<=n; i++)

    {

        if(num[i]*c[i] > m)

            Complete_Pack(c[i],w[i],m);

        else

        {

            int k = 1;

            while(k < num[i])

            {

                ZeroOne_Pack(k*c[i],k*w[i],m);

                num[i] -= k;

                k <<= 1;

            }

            ZeroOne_Pack(num[i]*c[i],num[i]*w[i],m);

        }

    }

    return dp[m];

}

int main()

{

    int t;

    cin>>t;

    while(t--)

    {

        cin>>m>>n;

        for(int i=1; i<=n; i++)

            cin>>c[i]>>w[i]>>num[i];

        cout<<Multi_Pack(c,w,num,n,m)<<endl;

    }

    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值