需要全部代码请点赞关注收藏后评论区留言私信~~~
下面列举通过余弦相似度公式和标准库分别计算不同文本信息相似度的实例,首先需要对中文进行分词,通过jieba导入分词库文件,使用Python标准库计算相似度,导入两种不同的相似度计算库difflib和fuzz,除此之外,还自定义了基于余弦相似度公式的相似度计算方法
接着定义余弦相似度计算函数,函数参数部分传入需要比较的两个文本信息,先对文本进行向量化处理,dot计算出两个向量之间的点积,即相同维度上的值的乘积和,如果A和B是同一个向量,则求出的是欧几里得距离平方,余弦相似度函数返回的是根据余弦相似度计得出的结果 代码如下
# 余弦相似度
def similarity(text1, text2):
cos_text1 = (Counter(text1))
cos_text2 = (Counter(text2))
similarity_text1 = []
similarity_text2 = []
for i in set(text1 + text2):
similarity_text1.append(cos_text1[i])
similarity_text2.append(cos_text2[i])
similarity_text1 = np.array(similarity_text1)
similarity_text2 = np.array(similarity_text2)
return similarity_text1.dot(similarity_text2) / (np.sqrt(similarity_t