K-Means、层次聚类算法讲解及对iris数据集聚类实战(附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

聚类(Clustering) 一个重要的非监督学习方法

聚类-即是将相似的对象组成多个类簇,以此来发现数据之间的关系

聚类(簇):数据对象的集合 在同一个聚类(簇)中的对象彼此相似 不同簇中的对象则相异

聚类是一种无指导的学习:没有预定义的类编号

聚类分析的数据挖掘功能 作为一个独立的工具来获得数据分布的情况

作为其他算法(如:特征和分类)的预处理步骤

聚类的“好坏”没有绝对标准

一、K-Means聚类

1. 算法原理

给定一个n个对象或元组的数据库,一个划分方法构建数据的k个划分,每个划分表示一个簇, k<=n,而且满足

1)每个组至少包含一个对象; 2)每个对象属于且仅属于一个组

划分时要求同一个聚类中的对象尽可能的接近或相关,不同聚类中的对象尽可能的原理或不同

一般,簇的表示有两种方法:

1)k-平均算法,由簇的平均值来代表整个簇;

2)k中心点算法,由处于簇的中心区域的某个值代表整个簇 

2. K-means算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值