通俗易懂的解释评分卡刻度原理

违约概率:p

比率(违约概率/正常概率): odds=p/(1-p)

评分卡分值:表示为比率对数的线性表达式

Score=A-B*log(odds)

A、B是常数,负号的作用使得违约概率越低,分数越高。

Logistic回归模型:

L o g ( o d d s ) = β + β 1 ∗ x 1 + … + β p ∗ x p Log(odds)=β+β1*x1+…+β_p*x_p Log(odds)=β+β1x1++βpxp

其中,用建模参数拟合模型可以得到模型参数β(截距),β1,…,βp.

两个假设:

1.在某个特定的比率设定特定的预期分值(设定比率为θ的特定点的分值为P);

2.指定比率翻番的分数(PDO)(比率为2θ的点的分值为P-PDO).

代入公式Score=A-B*log(odds)得到如下等式:

P=A-B*log(θ)

P-PDO=A-B*log(2θ)

解方程:

B=PDO/log(2)

A=P+B*log(θ)

例:假设想要设定评分卡刻度是的比率为(违约比正常)时的分值是600分,PDO=20,然后计算得出:B=28.25 A=481.66

则可以计算分值为:Score=481.89-28.85log(odds)

常数A称为补偿,常数B称为刻度。

在这里插入图片描述
分值分配:

Score=A-B*log(p/(1-p))

=A-B*

其中,变量x1,…xP是出现在最终模型中的自变量(已经过变量选择程序)。由于所有变量都已经经过了WOE转换,则可以将这些变量中的每一个写成如下展开式:

在这里插入图片描述
其中wij是第i个变量的第j个分类的证据权重;σij是二元变量,标识变量i是否取第j个值。基础分值等于A-B*β0.

评分卡建模过程中面临的挑战是:模型参数的确定、变量的分段、分段WOE

矩阵策略:用一个或多个没有出现在评分卡中的变量建立一个临界层,这个临界层可以表现为一个简单的表或决策树。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值