自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

ywj_1991的博客

机器学习|决策树|逻辑回归

  • 博客(45)
  • 收藏
  • 关注

原创 【教程】如何利用bbbrisk一步一步实现评分卡

评分卡,一般是指用于小贷客户质量评分的评分卡表。评分卡样式如下:来了一个新客户,先根据客户的数据,判断客户在各个特征上属于哪一组然后在评分卡表中找到对应的分数,对所有特征得分求和,并加上基本分,就是客户的总评分假设客户在rev、due30、due90、city上的组别为【0、3、1、1】那么客户在rev、due30、due90、city上的得分为【28、-30、-20、5】则客户的总得分为28-30-20+5+780=763。

2025-04-02 00:09:17 1061

原创 过拟合与过拟合的经典例子

本节通过概念解析与可视化例子,讲述什么是过拟合什么是过拟合过拟合是指在由于过度拟合训练数据,导致模型过于复杂,以致于在测试数据上预测效果不好正因此,过拟合也称为缺失泛化能力过拟合例子常用于解析过拟合的有两个例子曲线拟合可以看到,过拟合时,模型虽然在训练数据上拟合得更好,但拟合出的曲线已经偏离了原本形态平面分类可以看到,过拟合时,模型虽然在训练数据上达到更好的效果,但这种"更好的效果"是通过"勉强而为之"换取而来的,它对模型真实应用时有害无益。

2023-10-17 07:31:08 974

原创 老饼讲解-动量梯度下降法(附python代码实例)

本节介绍动量梯度下降法的思想以及算法流程动量梯度下降法是对梯度下降法的一种改进,这主要是因为梯度下降法在遇到局部最优时,毫无办法为了解决跳出局部最优,动量梯度下降法为此模仿物体从高处滚到低处的原理,由于物体具有动量,遇到小坑时会由于原有动量而跃出小坑,因此,动量梯度下降法在迭代的过程中引入动量的概念,它的迭代量改为"速度",而当前的负梯度只作为速度的修改量,动量梯度下降法迭代公式如下:其中,mc是动量系数,一般设为0.9,g是梯度。

2023-08-16 02:23:43 635

原创 机器学习-PCA主成份分析详细解说及代码实现

老饼讲解-机器学习:PCA主成份分析常用于降维,是一个基础、知名度极高和常用的方法本文介绍PCA的原理和本质,并介绍相关使用场景的用法

2022-12-10 18:49:33 4748

原创 【机器学习】SVM支持向量机模型

【老饼讲解-机器学习】本文解说SVM的硬间隔损失函数的定义和思想,以及硬间隔损失函数的推导。

2022-11-21 23:22:54 6035 2

原创 【逻辑回归】优秀网文收集

《老饼讲解-机器学习》本文收集、整理一些关于【逻辑回归】的优秀网文,用于学习、参考和拓展。

2022-09-30 10:15:26 445

原创 【逻辑回归】逻辑回归sigmoid函数怎么来的

《老饼讲解-机器学习》:本文讲解,逻辑回归模型sigmoid函数由来的思路与推导。推导思路主要来源于香农信息量。

2022-09-29 07:35:02 1369 1

原创 2022机器学习好网站大收藏

笔者花了近十天时间,到各个网站上去玩了一遍,精心筛选出传统机器学习的干货网站和资源,不能保障全面,尽量让每个网站都是机器学习的干货好网站。

2022-09-20 12:18:51 5756

原创 sklearn决策树怎么使用ccp_alpha进行剪枝

《老饼讲解-机器学习》本文讲解sklearn中决策树ccp_alpha参数的使用方法,它主要用于ccp后剪枝。ccp_alpha的值要设为多少?事实上,一般并不是直接设置ccp_alpha,而是要先打印CCP路径,再根据路径信息来决定alpha的值。CCP路径又是什么鬼?本文一一道来。

2022-09-14 09:34:40 4007

原创 线性回归中均方差的意义

《老饼讲解-机器学习》线性回归中一般使用均方差作为损失函数,那均方差的背景意义是什么呢?本文从概率的角度讲解,线性回归中均方差损失函数的实际意义。

2022-09-07 10:52:27 2020

原创 一个sklearn实现Adboost的简单Demo

《老饼讲解-机器学习》本文展示一个python的sklearn中实现Adboost的Demo,Adboost的原理请参考《Adboost原理》sklearn内部如何实现Adboost算法请参考《Adboost-自实现代码》代码简介代码展示一个利用python的sklearn实现Adboost的Demo,Demo先是随机生成一组二分类数据,然后调用Adboost包进行训练,最后展示预测结果和模型的相关参数。........................

2022-08-31 23:17:53 538

原创 ols最小二乘法是什么|OLS最小二乘法是如何推导的

本站原创文章,转载请说明来自《老饼讲解-机器学习》ml.bbbdata.com在机器学习的线性求解中,线性方程组往往不可解,我们更多时候是求取一个最小二乘解,称为OLS(ordinary least squares)最小二乘法最小二乘解公式因此成为机器学习的一个常用公式,本文介绍什么是最小二乘解、最小二乘解的公式,和最小二乘解公式的两种推导。最后,讲解QR分解如何优化最小二乘解的实际计算。....................................

2022-08-30 20:29:23 3698

原创 老饼教你深入浅出理解-《牛顿法求极值》

牛顿法求极值是一种机器学习中常见的方法,由于它利用了二阶导信息,它的迭代速度比梯度下降法要更加快,但往往由于计算量较为复杂,它的使用往往没有梯度法广泛。本文介绍什么是牛顿法求极值,并给出相关理论思路与推导。

2022-08-23 14:39:38 1117

原创 |●梯度下降是什么|●梯度下降算法原理|●梯度下降实例

《老饼讲解机器学习》本文讲解机器学习中最经典基础的梯度下降算法。

2022-05-12 10:06:25 3739

原创 朴素贝叶斯算法(初学者实例入门)

《老饼讲解机器学习》一、算法介绍朴素贝叶斯是基于贝叶斯后验概率建立的模型。它用于解决分类问题。它的主要思想是,通过历史数据,对每个类别建立经验概率公式,然后当新样本进来时,用各个类别的概率经验公式分别进行预测,最终,属于哪个类别的概率最大,就认为是哪个类别。注:为了简化,我们不一定用概率公式p(x),也可以使用它的简化版g(x)替代它。二、贝叶斯概率公式与判别函数模型的关键是如何用历史数据构建类别的概率公式,贝叶斯原理恰好可以解决这个问题。(一) 贝叶斯原理...

2022-05-11 10:28:04 5509 3

原创 入门篇:决策树学习建议(写给在学习中遇到困难的同学)

《老饼讲解机器学习》决策树的内容比较混杂,一条好的学习路线能起到事半功倍的作用。本文不涉及任何的决策树原理,主要给大家梳理学习路线和学习重心,以帮助后面更轻松的学习。

2022-05-10 23:33:38 950

原创 AUC与ROC曲线面积的意义(细扒sklearn的AUC计算方法)

本文我们详细介绍什么是AUC、ROC,和AUC的具体计算逻辑、实现代码,以及AUC的使用经验值。

2022-05-10 11:38:37 13216 6

原创 机器学习怎么入门-疑惑解答(2022持续更新)

《老饼讲解机器学习》本人收集和回答机器学习入门的一些疑惑,希望能帮助初学者解决一些方向性的问题。例如机器学习用什么软件,怎么找资料,学习路线,机器学习的核心问题,机器学习怎么学,机器学习有什么经典书藉,机器学习要学什么数学等。

2022-05-08 17:21:56 956

原创 入门篇(二)模型:逻辑回归(一步步从原理到实现)

本文介绍机器学习的第二个入门模型-逻辑回归,和利用梯度下降法求解逻辑回归,并展示具体的逻辑回归代码例子,是上手逻辑回归算法的入门文章,

2022-05-07 13:50:49 9481

原创 从《线性回归》学习模型三要素

本文介绍了机器学习的第一个入门模型-线性模型。以及用线性模型,引出了机器学习模型的基本要素

2022-05-07 13:05:43 1408

原创 入门篇-机器学习概览

目录一、机器学习是做什么的二、机器学习的建模流程三、机器学习的核心问题四、个人学习重心一、机器学习是做什么的机器学习的主要任务是利用历史数据训练一个模型,在新样本进来时,可以用模型对新样本进行预测。二、机器学习的建模流程机器学习的主要流程分三部分:数据准备、模型训练和模型效果评估。个人的学习核心主要是模型的算法、原理。而实际项目中,80%的时间基本都聚焦在数据准备上,例如数据收集、清洗、变量衍生和变量分析等。学习与实际项目应用是二极分化、对立而

2022-05-07 12:48:58 703

原创 评分卡-分数转换与推导(详细推导与应用)

本文讲解评分卡的分数转换

2022-04-15 09:20:14 7353

原创 评分卡实例:一步一步实现评分卡(详细长文)

《老饼讲解机器学习》本文讲述小贷评分卡的完整流程,包括数据处理、变量筛选、建模、上线等。小贷评分卡有很多细节,它不只是单纯的逻辑回归模型,而是一整套业务处理,本文正是把小贷评分卡的细节、操作、原理以例子的形式呈现与讲解,...

2022-04-13 11:01:42 27965 16

原创 sklearn逻辑回归为什么要归一化

为什么有的人说,逻辑回归需要归一化,而有的人说逻辑回归不需要归一化呢?他们说的都是对的,看完本文,你就知道为什么会有两种说法。本文先讲述不归一化对梯度下降法的影响,实际也就是逻辑回归需要归一化的原因。因为逻辑回归在求解过程中,使用的是梯度下降之类的算法。............

2022-03-26 23:40:13 7103

原创 一个简单的逻辑回归多分类例子与代码(python-sklearn实现)

本文讲解sklearn逻辑回归以multinomial模式做多分类的一个简单例子,并提取最后的模型表达式

2022-03-23 15:52:27 8293

原创 逻辑回归:详细建模流程与例子代码

本文讲述逻辑回归完整的建模流程本文只作流程介绍,完整代码见《老饼讲解机器学习》

2022-03-22 10:36:30 7581

原创 sklearn逻辑回归:参数详解

本文讲述sklearn逻辑回归参数详解

2022-03-21 20:18:07 13744

原创 sklearn逻辑回归:提取模型系数与系数反归一化

在sklearn中建立完逻辑回归模型,怎么将逻辑回归模型的公式提取出来呢?本文讲解如何将sklearn的逻辑回归模型的模型表达式提取出来,并展示具体的例子

2022-03-21 19:56:29 5059

原创 sklearn:一个简单的逻辑回归例子

一个简单的逻辑回归例子,python实现(sklearn)例子

2022-03-19 12:41:10 1921

原创 逻辑回归过拟合分析与解决方案

《老饼讲解机器学习》:本文讲解逻辑回归过拟合的原因,和具体解决方案。在变量处理得当的条件下,逻辑回归过拟合是比较少的,但还是会有些坑需要注意,本文正是通过分析原因和解决方案,以避免逻辑回归过拟合和当遇到过拟合时解决过拟合。

2022-03-11 09:35:13 6563

原创 深入浅出:逻辑回归入门

老饼讲解机器学习》(1)也可以用来做多分类,底层还是二分类,只是把多分类问题转为多个二分类问题,它是二分类的延伸,而非本身是多分类,所以我们只讲二分类的逻辑。(2)标签一定是{0,1},不能是{-1,1},如果是{-1,1}或其它,则底层还是会转回{0,1}。即它是一个预测”是“/”否“ 概率的问题。本文介绍逻辑回归的基本原理与要点。

2022-03-01 18:48:01 1311

原创 sklearn决策树运行graphviz报错解决方案

《老饼讲解机器学习》目录1.下载graphviz2.安装3.测试运行graphviz报错:failed to execute ['dot', '-Tsvg'], make sure the Graphviz executables are on your systems' PATH1.下载graphviz到 https://graphviz.org/download/下载graphviz(64位系统一定要选择64位Ins

2022-02-26 16:04:34 1889

原创 决策树CART、ID3、C4.5原理梳理

一. 学习决策树原理的顺序二.CART分类树(一)分类树模型结构,(二).分类树构建过程,(二).剪枝(防止过拟合)三. CART回归树模型四. ID3算法五.C4.5算法,(一) ID3的缺陷,(二) C4.5打上补丁六.决策树演进与对比能来看算法原理的,估计都对决策树有一些初步理解了。决策树算法原理其实非常简单, 但由于网上杂文过多,往往把概念弄得非常混乱,造成原理理解困难

2022-02-22 16:07:24 3937 1

原创 决策树建模完整流程

一.数据处理,(一) 数据预处理(二)训练、测试数据分割,二.试探建模极限,三.参数调优(预剪枝),1.参数网络扫描,2.参数评估,3.待调优参数列表四.后剪枝调优,(一) 打印决策树相关信息,(二) 剪枝,五.模型提取,决策树建模完整流程主要有五个:1.数据处理,2.试探建模极限,3.参数调优,4.后剪枝,5.模型提取本文只作流程介绍,完整代码见《决策树建模完整代码》

2022-02-21 15:39:01 12832 1

原创 细讲sklearn决策树后剪枝(带例子)

为预防模型过拟合,我们可以采用预剪枝和后剪枝方法,1. 预剪枝:树构建过程,达到一定条件就停止生长,2. 后剪枝是等树完全构建后,再剪掉一些节点。本文讲述后剪枝,预剪枝请参考《sklearn决策树预剪枝》一.CCP后剪枝简介,后剪枝一般指的是CCP代价复杂度剪枝法(Cost Complexity Prun.一.CCP后剪枝简介二.剪枝操作过程(1)查看CCP路径(2)根据CCP路径剪树

2022-02-19 17:55:04 8905 1

原创 sklearn决策树预剪枝

为预防模型过拟合,我们可以采用预剪枝和后剪枝方法1. 预剪枝:树构建过程,达到一定条件就停止生长2. 后剪枝是等树完全构建后,再剪掉一些节点。本文讲述预剪枝,后剪枝请参考《sklearn决策树后剪枝》一.预剪枝即调参预剪枝是树构建过程,达到一定条件就停止生长,在sklearn中,实...

2022-02-18 23:18:16 2809 1

原创 实用:sklearn提取决策树规则代码(附python代码)

将训练好的模型sk_tree传入以上函数,转化成字典,保存成文件。在决策树模型建好之后,要提取规则布署到生产。《老饼讲解机器学习》

2022-02-17 19:56:59 3198 1

原创 实用:sklearn提取决策树数据例子(附python代码)

用sklearn建好决策树后,可以打印出树的结构:但往往我们提取图中的数据(例如用于将决策树转化成规则代码),那图中的数据究竟在哪呢?本文讲述如何在sklearn训练好决策树后,提取决策树中的数据。

2022-02-17 16:34:42 4174 1

原创 一文读懂sklearn决策树参数详解(python代码)

sklearn决策树参数详解,详细说明决策树的各个参数的作用

2022-02-16 14:29:15 10810 2

原创 sklearn决策树结果可视化

《老饼讲解机器学习》目录一.代码二.运行结果sklearn中,训练完决策树后,将决策树可视化,更容易帮助我们了解模型的训练结果。决策树图形化 需要先通过pip安装graphviz包: pip install graphviz仍然使用《分类:一个简单的决策树例子》中的例子:一.代码from sklearn.datasets import load_irisfrom sklearn import treeimpor

2022-02-16 13:31:06 4404

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除