BP神经网络python实现

这篇博客详细介绍了如何使用Python实现BP神经网络,包括输入层、隐含层、输出层的定义,以及前向传播、反向传播的计算过程。作者通过插入偏倚单位来处理数据,并给出了权重矩阵的描述。最后,提供了代码实现。
摘要由CSDN通过智能技术生成

之前在我的另外一篇博客做了BP神经网络的理论介绍,这次使用python语言来实现。具体细节可能有点不同。


  1. 符号说明
    (一) 输入层

    X=(x1)T(xm)T

    • X是数据集,维度是(m*(nIn)),其中m是样本例数,nIn是样本的特征数

      但在代码里面,为了对应偏倚单位,我们在X的第一列插入一列,作为偏倚单位(bias unit),如下:

      X=11(x1)T(xm)T

      此时X为m*(nIn+1)

    (二) 隐含层

    hi=(hi1)T(hinNode)T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值