上机内容:用函数解决素数回文数问题(改进)
改进函数:void Out_Prime(int); 输出n以内的所有素数
void Out_Palindrome(int); 输出n以内的所有回文数
void Out_pp(int); 输出n以内的所有回文素数
void Out_niPrime(int); 输出n以内的所有可逆素数
通过这样的函数改进,将本例所有有关素数回文数的问题都有用函数实现,减少了main()函数中重复代码的出现,增加了程序可读性和可维护性
//改进
#include<iostream>
#include<cmath>
using namespace std;
void Out_Prime(int); //函数声明部分,输出n以内的所有素数
void Out_Palindrome(int); //输出n以内的所有回文数
void Out_pp(int); //输出n以内的所有回文素数
void Out_niPrime(int); //函数定义:输出n以内的所有可逆素数
int main() //主函数部分
{
//输出1000以内的所有素数
cout<<"1000以内的所有可逆素数:"<<endl;
Out_Prime(1000);
system("pause"); //为了让程序阶段性输出(即一步一步输出素数,回文等),利用系统函数让程序暂停输出,按任意键后继续
//输出1000以内的所有回文数
cout<<"1000以内的所有回文数:"<<endl;
Out_Palindrome(1000);
system("pause");
//输出1000以内的所有回文素数
cout<<"1000以内的所有回文素数:"<<endl;
Out_pp(1000);
system("pause");
//输出1000以内的所有可逆素数
cout<<"1000以内的所有可逆素数:"<<endl;
Out_niPrime(1000);
return 0;
}
//函数定义部分
void Out_Prime(int n) //函数定义1:输出n以内的所有素数
{
bool prime;
int i,count=0;
//cout<<n<<"以内的所有素数:"<<endl;
for(i=1;i<=n;++i)
{
if(i==1) //先处理特殊的“1”和“2”
prime=false; //1既不是素数也不是合数,在此作为不是素数处理
else if(i==2)
prime=true; //2是素数,prime=true,之所以要特殊处理,是因为当n=2时不符合第二重循环中除数i从2开始的条件
else
{
for(int k=2;k<=sqrt(i);++k)
{
prime=true;
if(i%k==0)
{
prime=false;break;
}
}
}
if(prime)
{
++count;
cout<<i<<"\t";
if(count%10==0)
cout<<endl;
}
}
cout<<endl;
}
void Out_Palindrome(int n) //函数定义2:输出n以内的所有回文数
{
int count=0;
//cout<<n<<"以内的所有回文数:"<<endl;
for(int i=1;i<=n;++i)
{
bool isPalindrome=false;
int m=0,t;
t=i; //先将这个数i赋给另一个变量,处理t即是处理这个数
while(t>0)
{
m=m*10+t%10; //通过对t取余得到个位数,乘10累加实现重新组合成一个数
t=t/10; //对10取整配合以上取余实现从后往前得到各个位上的数
}
if(i==m)
isPalindrome=true;
if(isPalindrome)
{
++count;
cout<<i<<"\t";
if(count%10==0)
cout<<endl;
}
}
cout<<endl;
}
void Out_pp(int n) //函数定义3:输出n以内的所有回文素数
{
int t,m,count=0;
bool prime;
cout<<"1000以内的回文素数有:"<<endl;
for(int i=1;i<=n;++i)
{
if(i==1) //先处理特殊的“1”和“2”
prime=false; //1既不是素数也不是合数,在此作为不是素数处理
else if(i==2)
prime=true; //2是素数,prime=true,之所以要特殊处理,是因为当n=2时不符合第二重循环中除数i从2开始的条件
else
{
prime=true;
for(int j=2;j<=sqrt(i);++j)
{
if(i%j==0)
{
prime=false;
break;
}
}
}
if(prime) //先判断是否素数
{
t=i;
m=0;
while(t>0)
{
m=m*10+t%10;
t=t/10;
}
if(i==m) //是素数在判断是否回文
{
++count;
cout<<i<<"\t";
if(count%10==0)
cout<<endl;
}
}
}
cout<<endl;
}
void Out_niPrime(int n) //函数定义4:输出n以内的所有可逆素数
{
int i,j,count=1; //count计算可逆素数的个数,初值为1,因为后文先输入了“2”这个特殊的数
bool prime; //标志是否素数
cout<<2<<"\t";
for(i=3;i<=n;++i)
{
prime=true;
for(j=2;j<=sqrt(i);++j) //先判断是否素数
{
if(i%j==0)
{
prime=false;
break;
}
}
if(prime)
{
int t=i;
int m=0;
while(t>0)
{
m=m*10+t%10;
t=t/10;
}
bool prime_ni=true; //标志是否可逆
for(int k=2;k<=sqrt(m);++k) //后判断是否可逆
{
if(m%k==0)
{
prime_ni=false;
break;
}
}
if(prime_ni)
{
++count;
cout<<i<<"\t";
if(count%10==0)
{
cout<<endl;
}
}
}
}
cout<<endl;
}
运行结果: