第四章函数--函数初体验项目2-1用函数解决素数回文数问题(改进)

上机内容:用函数解决素数回文数问题(改进)
                    改进函数:void Out_Prime(int); 输出n以内的所有素数
                                        void Out_Palindrome(int);  输出n以内的所有回文数
                                        void Out_pp(int);         输出n以内的所有回文素数
                                        void Out_niPrime(int);  输出n以内的所有可逆素数
                   通过这样的函数改进,将本例所有有关素数回文数的问题都有用函数实现,减少了main()函数中重复代码的出现,增加了程序可读性和可维护性

我的程序:
//改进
#include<iostream>
#include<cmath>
using namespace std;
void Out_Prime(int);      //函数声明部分,输出n以内的所有素数
void Out_Palindrome(int);  //输出n以内的所有回文数
void Out_pp(int);         //输出n以内的所有回文素数
void Out_niPrime(int);  //函数定义:输出n以内的所有可逆素数

int main()     //主函数部分
{
    
	//输出1000以内的所有素数
	cout<<"1000以内的所有可逆素数:"<<endl;
	Out_Prime(1000);
	system("pause");   //为了让程序阶段性输出(即一步一步输出素数,回文等),利用系统函数让程序暂停输出,按任意键后继续
    
	//输出1000以内的所有回文数
	cout<<"1000以内的所有回文数:"<<endl;
    Out_Palindrome(1000);
    system("pause");
    
	//输出1000以内的所有回文素数
    cout<<"1000以内的所有回文素数:"<<endl;
    Out_pp(1000);
	system("pause");
    
	//输出1000以内的所有可逆素数
	cout<<"1000以内的所有可逆素数:"<<endl;
	Out_niPrime(1000);
	return 0;
}

//函数定义部分
void Out_Prime(int n)   //函数定义1:输出n以内的所有素数
{
	bool prime;
	int i,count=0;
	//cout<<n<<"以内的所有素数:"<<endl;
	for(i=1;i<=n;++i)
	{   
		
		if(i==1)           //先处理特殊的“1”和“2”
			prime=false;  //1既不是素数也不是合数,在此作为不是素数处理
		else if(i==2)
			prime=true;   //2是素数,prime=true,之所以要特殊处理,是因为当n=2时不符合第二重循环中除数i从2开始的条件
		else
		{
			for(int k=2;k<=sqrt(i);++k)
			{   
				prime=true;
				if(i%k==0)
				{
					prime=false;break;
				}
			}	   
		}
		if(prime)
		{
			++count;
			cout<<i<<"\t";
			if(count%10==0)
				cout<<endl;
			
		}
	}
	cout<<endl;
}

void Out_Palindrome(int n)   //函数定义2:输出n以内的所有回文数
{   
	int count=0;
	//cout<<n<<"以内的所有回文数:"<<endl;
    for(int i=1;i<=n;++i)
    {  
		bool isPalindrome=false;
		int m=0,t;
		t=i;                //先将这个数i赋给另一个变量,处理t即是处理这个数
		while(t>0)
		{
			m=m*10+t%10;    //通过对t取余得到个位数,乘10累加实现重新组合成一个数
			t=t/10;        //对10取整配合以上取余实现从后往前得到各个位上的数
		}
		if(i==m)     
			isPalindrome=true;
		if(isPalindrome)
		{
			++count;
			cout<<i<<"\t";
			if(count%10==0)
				cout<<endl;	
		}
	}
    cout<<endl;
}

void Out_pp(int n)  //函数定义3:输出n以内的所有回文素数
{
    int t,m,count=0;
	bool prime;       
	cout<<"1000以内的回文素数有:"<<endl;
    for(int i=1;i<=n;++i)     
	{  
		if(i==1)           //先处理特殊的“1”和“2”
			prime=false;  //1既不是素数也不是合数,在此作为不是素数处理
		else if(i==2)
			prime=true;   //2是素数,prime=true,之所以要特殊处理,是因为当n=2时不符合第二重循环中除数i从2开始的条件
		else
		{   
			prime=true;
			for(int j=2;j<=sqrt(i);++j)
			{
				if(i%j==0)
				{
					prime=false;
					break;
				}
			}
		}
		if(prime)   //先判断是否素数
		{
			t=i;
			m=0;
			while(t>0)
			{
				m=m*10+t%10;
				t=t/10;
			}
			if(i==m)   //是素数在判断是否回文
			{   
				++count;
				cout<<i<<"\t";
				if(count%10==0)
					cout<<endl;
			}
		}		
	}
	cout<<endl;
}

void Out_niPrime(int n)  //函数定义4:输出n以内的所有可逆素数
{
	int i,j,count=1;  //count计算可逆素数的个数,初值为1,因为后文先输入了“2”这个特殊的数
	bool prime;   //标志是否素数
    cout<<2<<"\t";    
	for(i=3;i<=n;++i)
	{
		prime=true;     
		for(j=2;j<=sqrt(i);++j)    //先判断是否素数
		{
			if(i%j==0)
			{
				prime=false;
				break;
			}
		}
		if(prime)         
		{
			int t=i;
			int m=0;
			while(t>0)
			{
				m=m*10+t%10;
				t=t/10;
			}
			bool prime_ni=true;    //标志是否可逆
			for(int k=2;k<=sqrt(m);++k)   //后判断是否可逆
			{
				if(m%k==0)
				{
					prime_ni=false;
					break;
				}
			}
			if(prime_ni)     
			{   
				++count;
				cout<<i<<"\t";
				if(count%10==0)
				{
					cout<<endl;
				}
			}			
		}
	}
	cout<<endl;
} 

运行结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值